
Unit 9

SI 413

Assignments

Types

Summary

Assignments

An assignment says that something (the left-hand side)
should refer to something else (the right-hand side).

The syntax varies (=, :=, <-, set!, etc.)

Questions we should ask:

• What happens semantically when we have an assignment?

• What things can and can’t be assigned to?

• How do these choices intermix and relate to other concepts
in PL design and implementation?

Unit 9

SI 413

Assignments

Types

Summary

Variable Model

What does an assignment actually do?

We have two basic options:

• Value model: Each variable refers to a single value.
Assignment means copying from the r.h.s. to the l.h.s.
This is the default in C/C++ and SPL.

• Reference model: Each variable refers to an object in
memory. Assignment means changing the l.h.s. to
reference the same thing as the r.h.s.
This is the default in Scheme and many more modern
languages.

What do these options remind you of?

Unit 9

SI 413

Assignments

Types

Summary

Mixing Values References Models I

In Java, primitive types (int, boolean, etc.) follow the value
model, while Objects follow the reference model.

For example:

int x = 5;

int y = x;

++x; // y is still equal to 5

ArrayList <String > a = new ArrayList <String >();

ArrayList <String > b = a;

a.add(” boo ”); // a and b BOTH have one element, boo.



Unit 9

SI 413

Assignments

Types

Summary

l-values and r-values

l-value: anything that can be on the l.h.s. of an assignment.
r-value: anything that can be on the r.h.s. of an assignment.

r-values usually include any expression.

l-values can be:

Unit 9

SI 413

Assignments

Types

Summary

The assignment statement

Depending on the language, an assignment can be:

• Just a statement

• An r-value

• An l-value

Unit 9

SI 413

Assignments

Types

Summary

Constants and Immutables

A constant is a name whose value cannot be changed.
These are declared with special keywords like const or final.

An immutable is an object whose state cannot be changed.
For instance, Java Strings are immutable but not constant:

String a = ” a s t r i n g ”;
a = ” a n u t h e r s t r i n g ”; // This is fine.

a[2] = ’ o ’ ; // This won’t compile, for a few reasons.



Unit 9

SI 413

Assignments

Types

Summary

Mixing Values and References II

In C++, variables declared as references follow the reference
model:

int a = 5;

int& b = a;

a = 10; // Now b is 10 too!

b = 15; // Now a is 15 too!

Here we might say that b is an alias for a.

C++ reference variables are clearly not immutable, but they
are constant:

int a = 5, b = 6;

int& c = a;

c = b; // Now a and c are both 6.

b = 7; // This still ONLY changes b.

Unit 9

SI 413

Assignments

Types

Summary

Clones

Sometimes we really do want to make copies, even under the
reference model of variables.

Java objects that implement Cloneable allow this:

ArrayList <String > a = new ArrayList <String >();

a.add(” h e l l o ”); a.add(” e v e r y b o d y ”);
ArrayList <String > b = a;

ArrayList <String > c = a.clone ();

a.set(0,” g o o d b y e ”);
/* Now a and b have [" goodbye", "world"]

* but c is still [" hello", "world "]. */

Unit 9

SI 413

Assignments

Types

Summary

Types of Variables

A type is a tag on some data in a program that indicates what
it means or how it can be used.

Types can be built-in (e.g. int, char, . . . )
or user-defined (e.g. with class, enum, typedef, . . . )

Types can be declared (C, C++, Java, Ada, . . . )
or implicit (inferred) (Scheme, Ruby, Perl, Haskell, . . . )



Unit 9

SI 413

Assignments

Types

Summary

Type Safety

Types provide documentation and help ensure data gets used
correctly.

Type safety is a mechanism enforced by the compiler or
interpreter to ensure that types are not used in an incorrect or
meaningless way.

Languages with type safety are less prone to errors and exploits.
Nearly every modern language has some type safety.
Some languages allow explicit overwriting of type safety checks.

Unit 9

SI 413

Assignments

Types

Summary

Dynamic vs Static Typing

Where is type information stored?

• Dynamic Typing:
Types are stored with data objects, at run-time.
Makes sense for interpreted languages.

• Static Typing:
Types stored with symbols, and inferred for expressions, at
compile-time.
Very useful in compiled languages.

Unit 9

SI 413

Assignments

Types

Summary

Type inference

This refers to the automatic determination of an expression’s
type.

• Simple example: 5 + 3

has type int because 5 and 3 are both ints.

• More difficult: 5 + 3.2

Is this a double or int?
Depends on rules for type promotion/coercion.

• Totally crazy: Some languages like ML infer the types of
all variables, arguments, and functions based on how they
are used.
Type consistency is ensured at compile-time!



Unit 9

SI 413

Assignments

Types

Summary

What gets a type?

Constants or literals such as -8, ’q’, "some string", and 5.3

will all have a type.
Expressions will generally have the type of whatever value they
compute.

• Names: Only have a fixed type in statically-typed
languages.

• Functions: Type is determined by number and types of
parameters and type of return value.
Can be thought of as pre- and post-conditions.
May be left unspecified in dynamically-typed languages.

• Types: Do types have type? Only when they are
first-class!

Unit 9

SI 413

Assignments

Types

Summary

Type Checking

Type checks ensure type safety.
They are performed at compile-time (static) or run-time
(dynamic).

• Dynamic Type Checking: Easy! Types of arguments,
functions, etc. are checked as they are applied , at
run-time. Every time an object is accessed, its type is
checked for compatibility in the current context.

• Static Type Checking: Type safety is ensured at
compile-time.
The type of every node in the AST is determined statically.
Some level of type inference is always necessary.
Often, type declarations are used to avoid the need for
extensive inference.

Unit 9

SI 413

Assignments

Types

Summary

Class outcomes
You should know:

• The two variable models, and what their differences are.

• What are l-values and r-values?

• What is an alias? What is a clone?

• How do C++ and Java allow us to mix the value and
reference models?

• The benefits of type safety in programming languages.

• The differences between static and dynamic typing.

• The meaning of type inference.

You should be able to:

• Trace program execution using the value and reference
model of variables.

• Demonstrate dynamic and static type checks for an
example program.


