
Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Parameter Passing Modes

Our programs are littered with function calls like f (x , 5).

This is a way of passing information from the call site
(where the code f(x,5) appears) to the function itself.

The parameter passing mode tells us how the information
about the arguments (e.g. x and 5) is communicated from the
call site to the function.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Pass by Value

C/C++ use pass by value by default.
Java uses it for primitive types (int, boolean, etc.).

void f(int a) {

a = 2*a;

print(a);

}

int main() {

int x = 5;

f(x);

print(x);

return 0;

}

What does this C++ program print?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Pass by Value

In this scheme, the function recieves copies of the actual
parameters.

The function cannot modify the originals, only its copies, which
are destroyed when the function returns.

Function arguments represent one-way communication from
call site to function.
(How can the function communicate back?)

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Pass by Reference

C++ supports reference parameters.
Perl and VB use this mode by default.

sub foo {

$_[0] = ” haha c h a n g e d by f o o ”;
}

my $y = ” t h i s i s mine ! ”;
foo($y);

print $y , ”\n ”;

You can guess what this Perl program prints. . .

Similar behavior happens if we wrote void f(int &a) {...}

in the previous C++ example.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Pass by Reference

The formal parameters of the function become aliases for the
actual parameters!
Normally the actual parameters must be variable names
(or more generally, l-values. . .).

Function arguments now represent two-way communication.

Most common reasons to use reference parameters:

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Variations

• Pass by Value/Result
The initial value is passed in as a copy, and the final value
on return is copied back out to the actual parameter.
Behaves like pass-by-reference, unless the actual
parameter is accessed during the function call..

• Pass by Sharing
This is what happens with objects in Java.
Actual and formal parameters both reference some shared
data (i.e., the object itself).
But they are not aliases; functions can change the object
that is referenced, but cannot set which object is
referenced.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Pass by Value/Result

This is the default in Fortran, and for “in out” parameters in
Ada:

--in file f.adb

procedure f(x : in out Integer) is

begin

x := 10;

end f;

--in file test.adb

procedure test is

y : Integer := 5;

begin

f(y);

Ada.Integer_Text_IO.Put(y);

end test;

Calling test prints 10, not 5!

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Pass by Sharing
This is the default in languages like Java, for non-primitive
types:

class Share {

static class Small {

public int x;

public Small(int thex) { x = thex; }

}

public static void test(Small s) {

s.x = 10;

s = new Small (20);

}

public static void main(String [] args) {

Small mainsmall = new Small (5);

test(mainsmall);

System.out.println(mainsmall.x);

}

}

Does this program print 5, 10, or 20?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Parameter Passing in Functional
Languages

Why haven’t we talked about parameter passing in Haskell,
Scheme, etc.?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Argument evaluation

Question: When are function arguments evaluated?

There are three common options:

• Applicative order: Arguments are evaluated
just before the function body is executed .
This is what we get in C, C++, Java, and even SPL.

• Call by name: Arguments are evaluated
every time they are used .
(If they aren’t used, they aren’t evaluated!)

• Normal order: next slide. . .

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Lazy Evaluation

(A.K.A. normal order evaluation)

Combines the best of both worlds:

• Arguments are not evaluated until they are used.

• Arguments are only evaluated at most once.

(Related idea to memoization.)

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Lazy Examples

Note: lazy evaluation is great for functional languages (why?).

• Haskell uses lazy evaluation for everything, by default.
Allows wonderful things like infinite arrays!

• Scheme lets us do it manually with delayed evaluation,
using she built-in special forms delay and force.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Method calls in objects

What does a call like obj.foo(x) do in an OOP language
such as C++ or Java?

foo must be a method defined in the class of obj.
The method also has access to what object it was called on
(called this in C++ and Java).

This is syntactic sugar for having a globally-defined method
foo,
with an extra argument for “this”.
So we can think of obj.foo(x) as foo(obj,x).

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Overloading

Function overloading: one name, many functions.
Which function to call is determined by the types of the
arguments.

class A { void print () { cout << ” i n A” << endl; } };

class B { void print () { cout << ” i n B” << endl; } };

void foo(int a) { cout << a << ” i s an i n t \n”; }

void foo(double a) { cout << a << ” i s a doub l e \n”; }

int main() {

cout << (5 << 3) << endl;

A x; B y;

x.print ();

y.print ();

foo (5); foo (5.0);

}

How does overloading occur in this C++ example?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Polymorphism

Subtype polymorphism is like overloading, but the called
function depends on the object’s actual type, not its declared
type!

Each object stores a virtual methods table (vtable) containing
the address of every virtual function.
This is inspected at run-time when a call is made.

See section 9.4 in your book if you want the details.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Polymorphism example in C++

class Base { virtual void aha() = 0; };

class A :public Base {

void aha() { cout << ” I ’m an A ! ” << endl; }

};

class B :public Base {

void aha() { cout << ” I ’m a B ! ” << endl; }

}

int main(int argc) {

Base* x;

if (argc == 1) // can’t know this at compile-time!

x = new A;

else

x = new B;

x.aha(); // Which one will it call?

}

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Different kinds of functions

The code f(5) here is definitely a function call:

int f(int x) { return x + 6; }

int main() {

cout << f(5) << endl;

return 0;

}

• What else is a function call?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Operators

Say we have the following C++ code:

int mod (int a, int b) {

return a - (a/b)*b;

}

What is the difference between
23 % 5

and
mod(23, 5)

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Are Operators Functions?

It’s language dependent!

• Scheme: Every operator is clearly just like any other
function.
Yes, they can be re-defined at will.

• C/C++: Operators are functions, but they have a special
syntax.
The call x + y is syntactic sugar for either
operator+(x, y) or x.operator+(y).

• Java: Can’t redefine operators; they only exist for some
built-in types.
So are they still function calls?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Built-ins

A built-in function looks like a normal function call, but instead
makes something special happen in the compiler/interpreter.

• Usually system calls are this way.
C/C++ are an important exception!

• What is the difference between a built-in and a library
function?

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Macros

Recall that C/C++ has a preprocessor stage that occurs before
compilation.
These are the commands like #include, #ifndef, etc.

#define defines a macro. It corresponds to textual substitution
before compilation.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Constant Macros

Here’s an example of a basic macro that you might see
somewhere:

The program

#define PI 3.14159

double circum (double radius)

{ return 2*PI*radius; }

gets directly translated by the preprocessor to

double circum (double radius)

{ return 2*3.14159* radius; }

before compilation!

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Macro Issues #1

What if we wrote the last example differently:

#define PI 3.14159

#define TWOPI PI + PI

double circum (double radius)

{ return TWOPI*radius; }

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Function-like Macros

We can also do things like this in C++:

#define CIRCUM (radius) 2*3.14159* radius

...

cout << CIRCUM (1.5) + CIRCUM (2.5) << endl;

...

gets translated to

...

cout << 2*3.14159*1.5 + 2*3.14159*2.5 << endl;

...

(still prior to compilation)

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Macro Issues #2

What if we made the following function to print out the larger
number:

#define PRINTMAX (a,b) \

if (a >= b) {cout << a << endl;} \

else {cout << b << endl;}

This will work fine for PRINTMAX(5,10),
but what happens with the following:

int x = 5;

PRINTMAX (++x, 2)

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Thoughts on Macros

• The advantage is SPEED - pre-compilation!

• Notice: no types, syntactic checks, etc.
— lots of potential for nastiness!

• The literal text of the arguments is pasted into the
function wherever the parameters appear.
This is called . . .

• The inline keyword in C++ is a compiler suggestion that
may offer a compromise.

• Scheme has a very sophisticated macro definition
mechanism — allows one to define “special forms”.

Unit 7

SI 413

Parameter
Passing Modes

Parameter
Evaluation

Overloading
and
Polymorphism

Operators,
Built-ins

Macros

Class Outcomes

You should know:

• The way parameter passing works in pass by value, by
reference, by value/result, and by sharing

• Relative advantages of those parameter passing modes

• The way arguments are evaluated under applicative order,
normal order, and call by name

• Why lazy evaluation (normal order) can be terrific

• What function overloading is and where it gets used

• What subtype polymorphism is and how virtual tables are
used to implement it

• Differences between operators, built-ins, library routines,
and user-defined functions

• What constant macros and function-like macros are, and
what are their advantages and drawbacks.

