
Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Programming Language
Specification

Programming languages provide a medium to describe an
algorithm so that a computer can understand it.

But how can we describe a programming language so that a
computer can understand it?

We need to specify both:

• Syntax: the rules for how a program can look

• Semantics: the meaning of syntactically valid programs

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

English Syntax vs. Semantics

Consider four English sentences:

• Burens mandneout exhastrity churerous handlockies
audiverall.

• Feels under longingly shooting the darted about.

• Colorless green ideas sleep furiously.
(Noam Chomsky)

• It’s like all the big stories were stitched together into dead
tiny sisters.
(Jeffrey Harrison)

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

C++ Syntax vs. Semantics

What do the following code fragments mean?

• int x;

x = 2^3;

• if (x < y < z) {

return y;

}

else return 0;



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Syntax feeds semantics!

Consider the following grammar:

exp → exp op exp | NUM
op → + | - | * | /

This correctly defines the syntax of basic arithmetic statements
with numbers. But it is ambiguous and confuses the semantics!

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Better syntax specification

Here is an unambiguous syntax for basic arithmetic:

Terminals (i.e., tokens)
OPA = + | -
OPM = * | /
NUM = (+|-|)[0-9][0-9]*

LP = (

RP = )

STOP = ;

Valid constructs (i.e., grammar)
S → exp STOP

exp → exp OPA term | term
term → term OPM factor | factor

factor → NUM | LP exp RP

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Scanner and Parser Specification

Recall that compilation begins with scanning and parsing .

• Scanning turns a raw character stream into a stream of
tokens. Tokens are specified using regular expressions.

• Parsing finds larger syntactic constructs and turns a token
stream into a parse tree. Grammar is specified in
Extended Backus-Nauer Form. (EBNF allows the normal
constructs plus Kleene +, Kleene *, and parentheses.)



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Hand-rolled Scanner FA

Here is a finite automaton for our basic tokens:

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

What is a token?

When our FA accepts, we have a valid token.

We return the terminal symbol or “type”.
This usually comes right from the accepting state number.

Some tokens may require additional information, such as
the value of the number, or which operation was seen.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Code for hand-rolled scanner

The calc-scanner.cpp file implements the FA above using
switch statements. Check it out!

There is also a Bison parser in calc-parser.ypp containing:

• Datatype definition for the “extra” information returned
with a token

• Grammar production rules, using token names as terminals

• A main method to parse from standard in



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Extending our syntax

Some questions:

• What if we wanted ** to mean exponentiation?

• How about allowing comments? Single- or multi-line?

• How about strings delimited with "?

• What about delimiters?

• Can we allow negative and/or decimal numbers?

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Maximal munch

How does the C++ scanner know that “/*” starts a comment,
and is not a divide and then a multiply operator?

How does it know that “-5” is a single integer literal, and not
the negation operator followed by the number 5?

How does it even know if “51” is two integers or one?

Maximal munch rule: always take the token that matches the
most characters, starting from the current position.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Looking ahead

The code we referenced uses cin.putback() to return
unneeded characters to the input stream.

But this only works for a single character. In general, we need
to use a buffer. Implementing this requires a circular,
dynamically-sized array, and is a bit tricky.

For example, consider the language with - and --> as valid
tokens, but not --. This requires 2 characters of “look-ahead”.



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Structure of a Scanner

How does a scanner generation tool like flex actually work?

1 An NDFA is generated from each regular expression.
Final states are marked according to which rule is used.

2 These NDFAs are combined into a single NDFA.

3 The big NDFA is converted into a DFA.
How are final states marked?

4 The final DFA is minimized for efficiency.
The DFA is usually represented in code with a
state-character array .

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Look-ahead in scanners

The “maximal munch” rule says to always return the longest
possible token.

But how can the DFA tell if it has the maximal munch?

Usually, just stop at a transition from accepting to
non-accepting state.
This requires one character of look-ahead .

Is this good enough for any set of tokens?

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Parsing

Parsing is the second part of syntax analysis.

We use grammars to specify how tokens can combine.
A parser uses the grammar to construct a parse tree
with tokens at the leaves.

Scanner: Specified with regular expressions, generates a DFA
Parser: Specified with context-free grammar, generates a . . .



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Generalize or Specialize?

Parsing a CFG deterministically is hard:
requires lots of computing time and space.

By (somewhat) restricting the class of CFGs, we can parse
much faster.

For a program consisting of n tokens, we want O(n) time,
using a single stack, and not too much look-ahead.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Parsing Strategies

Top-Down Parsing:

• Constructs parse tree starting at the root

• “Follow the arrows” — carry production rules forward

• Requires predicting which rule to apply for a given
nonterminal.

• LL: Left-to-right, Leftmost derivation

Bottom-Up Parsing:

• Constructs parse tree starting at the leaves

• “Go against the flow” — apply reduction rules backwards

• Requires

• LR: Left-to-right, Rightmost defivation

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Parsing example

Simple grammar
S → T T
T → aa

T → bb

Parse the string aabb, top-down and bottom-up.



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Handling Errors

How do scanning errors occur?
How can we handle them?

How do parsing errors occur?
How can we handle them?

“Real” scanners/parsers also tag everything with filename &
line number to give programmers extra help.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Top-down parsing

1 Initialize the stack with S, the start symbol.;
2 while stack and input are both not empty

do
3 if top of stack is a terminal then
4 Match terminal to next token
5 else
6 Pop nonterminal and replace with

r.h.s. from a derivation rule

7 Accept iff stack and input are both empty

Make choice on Step 6 by “peeking” ahead in the token stream.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

LL(1) Grammars

A grammar is LL(1) if it can be parsed top-down with just 1
token’s worth of look-ahead.

Example grammar
S → T T
T → ab

T → aa

Is this grammar LL(1)?



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Common prefixes

The common prefix in the previous grammar causes a problem.

In this case, we can “factor out” the prefix:

LL(1) Grammar
S → T T
T → a X
X → b

X → a

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Left recursion

The other enemy of LL(1) is left recursion:

S → exp
exp → exp + NUM

exp → NUM

• Why isn’t this LL(1)?

• How could we “fix” it?

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Tail rules to get LL

To make LL grammars, we usually end up adding extra “tail
rules” for list-like non-terminals.

For instance, the previous grammar can be rewritten as

S → exp
exp → NUM exptail

exptail → ε | + NUM exptail

This is now LL(1).

(Remember that ε is the empty string in this class.)



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Recall: Calculator language
scanner

Token name Regular expression

NUM [0-9]+

OPA [+-]

OPM [*/]

LP (

RP )

STOP ;

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

LL(1) grammar for calculator
language

S → exp STOP

exp → term exptail
exptail → ε | OPA term exptail

term → factor termtail
termtail → ε | OPM factor termtail

factor → NUM | LP exp RP

How do we know this is LL(1)?

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Recursive Descent Parsers

A recursive descent top-down parser uses recursive functions
for parsing every non-terminal, and uses the function call stack
implicitly instead of an explicit stack of terminals and
non-terminals.

If we also want the parser to do something, then these
recursive functions will return values. They will also sometimes
take values as parameters.

(See posted example.)



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Table-driven parsing

Auto-generated top-down parsers are usually table-driven.

The program stores an explicit stack of expected symbols, and
applies rules using a nonterminal-token table.

Using the expected non-terminal and the next token, the table
tells which production rule in the grammar to apply.

Applying a production rule means pushing some symbols on the
stack.

(See posted example.)

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Automatic top-down parser
generation

In table-driven parsing, the code is always the same;
only the table is different depending on the language.

Top-down parser generators first generate two sets for each
non-terminal:

• PREDICT: Which tokens can appear when we’re expecting
this non-terminal

• FOLLOW: Which non-terminals can come after this
non-terminal

There are simple rules for generating PREDICT and FOLLOW,
and then for generating the parsing table using these sets.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Bottom-up Parsing

A bottom-up (LR) parser reads tokens from left to right and
maintains a stack of terminal and non-terminal symbols.

At each step it does one of two things:

• Shift: Read in the next token and push it onto the stack

• Reduce: Recognize that the top of the stack is the r.h.s.
of a production rule, and replace that r.h.s. by the l.h.s.,
which will be a non-terminal symbol.

The question is how to build an LR parser that applies these
rules systematically, deterministically, and of course quickly.



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Simple grammar for LR parsing

Consider the following example grammar:

S → E
E → E + T
E → T
T → n

Examine a bottom-up parse for the string n + n.

How can we model the “state” of the parser?

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Parser states

At any point during parsing, we are trying to expand one or
more production rules.

The state of a given (potential) expansion is represented by an
“LR item”.

For our example grammar we have the following LR items:

S → • E E → E + T •
S → E • E → • T
E → • E + T E → T •
E → E • + T T → • n
E → E + • T T → n •

The • represents “where we are” in expanding that production.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Pieces of the CFSM

The CSFM (Characteristic Finite State Machine) is a FA
representing the transitions between the LR item “states”.

There are two types of transitions:

• Shift: consume a terminal or non-terminal symbol and
move the • to the right by one.

Example: T→•n T→n•n

• Closure: If the • is to the left of a non-terminal, we have
an ε-transition to any production of that non-terminal
with the • all the way to the left.

Example: E→E+•T T→•nε



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Nondeterministic CFSM

S→•EE→•E+T

E→E•+T

E→E+•T

E→E+T•

E→•T E→T•

T→•n

T→n•

S→E•Eε

εE
ε

+

T

ε

T

ε

n

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

CFSM Properties

• Observe that every state is accepting.

• This is an NDFA that accepts valid stack contents.

• The “trap states” correspond to a reduce operation:
Replace r.h.s. on stack with the l.h.s. non-terminal.

• We can simulate an LR parse by following the CFSM on
the current stack symbols AND un-parsed tokens, then
starting over after every reduce operation changes the
stack.

• We can turn this into a DFA just by combining states.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Deterministic CFSM

S→•E
E→•E+T
E→•T
T→•n

0

S→E•
E→E•+T

1

E→T•
2

T→n•
3

E→E+•T
4

E→E+T•
5

E

T

n

+

Tn

• Every state is labelled with a number.

• Labels are pushed on the stack along with symbols.

• After a reduce, go back to the state label left at the top of
the stack.



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

SLR

Parsing this way using a (deterministic) CFSM is called SLR
Parsing.

Following an edge in the CFSM means shifting;
coming to a rule that ends in • means reducing.

SLR(k) means SLR with k tokens of look-ahead.
The previous grammar was SLR(0); i.e., no look-ahead
required.

When might we need look-ahead?

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Problem Grammar 1

Draw the CFSM for this grammar:

S → W W
W → a

W → ab

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Problem Grammar 2

Draw the CFSM for this grammar:

S → W b

W → a

W → X a

X → a



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

SLR Conflicts

A conflict means we don’t know what to do!

• Shift-reduce conflict:

W→a•
W→a•b

• Reduce-reduce conflict:

W→a•
X→a•

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

SLR(1)

SLR(1) parsers handle conflicts by using one token of
look-ahead:

• If the next token is an outgoing edge label of that state,
shift and move on.

• If the next token is in the follow set of a non-terminal that
we can reduce to, then do that reduction.

Of course, there may still be conflicts, in which case the
grammar is not SLR(1). More look-ahead may be needed.

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Review: Scanning

Scanning means turning source code into tokens.

Scanners . . .

• are implemented with FAs.

• are specified with regular expressions.

• use a look-ahead character to implement maximal munch

• can be generated automatically. This involves
determinizing an NDFA and then minimizing the DFA.



Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Review: Top-Down Parsing

Parsing means turning a token stream into a parse tree.

Top-down parsers . . .

• generate the parse tree starting with the root

• can recognize LL grammars

• need to predict which grammar production to take

• use token(s) of look-ahead to make decisions

• can be implemented by intuitive recursive-descent parsers

• can also be implemented by table-driven parsers

Unit 4

SI 413

Syntax &
Semantics

Scanning

Parsing

LL Parsers

LR Parsers

Summary

Review: Bottom-Up Parsing

Parsing means turning a token stream into a parse tree.

Bottom-up parsers . . .

• generate the parse tree starting with the leaves

• can recognize LR grammars

• can recognize more languages than LL parsers

• need to resolve shift-reduce and reduce-reduce conflicts

• use token(s) of look-ahead to make decisions

• can be implemented using CFSMs

• are created by Bison


