
Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Pure Functional Programming

Two characteristics of functional programming:

• Referential Transparency

• Functions are first class

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Procedures are First-Class

What does it mean for procedures to have first-class status?

• They can be given names.

• They can be arguments to procedures.

• They can be returned by procedures.

• They can be stored in data structures (e.g. lists).

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Procedures returning procedures

Example: Get the predicate for the type of a sample input

(define (test-my-type something)

(cond [(number? something) number ?]

[(symbol? something) symbol ?]

[(list? something) list?]))

Useful when combined with higher-order procedures:

(define (like-the-first L)

(filter (test-my-type (car L)) L))

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Storing procedures in a list

Maybe we want to apply different functions to the same data:

(define (apply-all alof alon)

(if (null? alof)

null

(cons ((car alof) alon)

(apply-all (cdr alof) alon))))

Then we can get statistics on a list of numbers:
(apply-all (list length mean stdev) (list 2.4 5 3.2 3 8))

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Interruption: History Class

• The lambda calculus is a way
of expressing computation

• Developed by Alonzo Church
(left) in the 1930s

• Believed to cover everything
that is computable
(Church-Turing thesis)

• Everything is a function:
numbers, points, booleans, . . .

• Functions are just a kind of
data!

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Anonymous functions in Scheme

lambda is a special form in Scheme that creates a nameless (or
“anonymous”) function:

(lambda (arg1 arg2 ...)

expr-using-args)

It’s a special kind of function-that-returns-a-function.

(lambda (x) (+ x 5)) ⇒ #<procedure>

((lambda (x) (+ x 5)) 8) ⇒ 13

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Behind the curtain

You have already been using lambda!

• (define (f x1 x2 ... xn) exp-using-xs)

is the same as:

• (let ((x1 e1) (x2 e2) ... (xn en)) exp-using-xs)

is the same as:

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Side Effects

Remember the intro to the Scheme standard:

Scheme is a statically scoped and properly tail-recursive dialect
of the Lisp programming language invented by Guy Lewis
Steele Jr. and Gerald Jay Sussman. It was designed to have an
exceptionally clear and simple semantics and few different ways
to form expressions. A wide variety of programming paradigms,
including functional, imperative, and message passing styles,
find convenient expression in Scheme.

What do we have to give up to get side effects?

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Controlling Output

Displaying text to the screen is a kind of side effect.

Here are some useful functions for screen output:

• (display X)

• (newline)

• (printf format args...)

The catch-all format flag is ~a.

(Note: Strings in Scheme are made using double quotes, like
”This is a string ”.)

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Structuring code with side-effects

With side effects, we have to violate the
one-expression-per-function rule.

• (void) is a Scheme function that returns nothing .
Functions like newline return this type.

• (begin exp1 exp2 ...)

This evaluates all the given expressions, sequentially, and
only returns the value of the last expression.
Notice how long it took us to need this!

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Mutation!

The built-in special form (set!\ x val)

changes the value of x to be val.

Say we want a function that will print out how many times it’s
been called. The following factory produces one of those:

(define (make-counter)

(let ((count 0))

(lambda ()

(set! count (+ 1 count))

(display count)

(newline))))

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Closures

Notice that make-counter makes a different count variable
each time it is called.

This is because each lambda call produces a closure — the
function along with its referencing environment.

Save yourself a lot of trouble:
The changing “state” variable (i.e., the let) must be
inside the function (i.e., the define), but
outside the lambda.

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Objects in Scheme

We can use closures and mutation to do OOP in Scheme!

More sophisticated counter:

(define (make-counter-obj)

(let ((count 0))

(lambda (command)

(cond [(symbol =? command ’get) count]

[(symbol =? command ’inc)

(set! count (+ 1 count))]

[(symbol =? command ’reset)

(set! count 0)]))))

The object now has three methods: get, inc, and reset.

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Built-in Data Structures

Scheme has some useful built-in data structures:

• Arrays (called “vectors”).

(define A (make-vector 5))

(vector-set! A 3 ’something)

(vector-ref A 3) ; produces ’something

(vector-ref A 5) ; error: out of bounds

• Hash tables

(define H (make-hash))

(hash-set! H 2 ’something)

(hash-set! H (list 20 #f) ’crazy !)

(hash-ref H ’(20 #f)) ; produces ’crazy!

(hash-ref H ’(bad)) ; error: no key (bad)

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Inefficiency in Scheme

Recall the problem of computing Fibonacci numbers from lab 1.

(define (fib n)

(if (<= n 1)

n

(+ (fib (- n 1))

(fib (- n 2)))))

Why is this function so slow?

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Memoization in Scheme

Recall: Memoization is remembering the results of previous
function calls, and never repeating the same computation.

Why is functional programming perfect for memoization?

Scheme’s built-in hashes can be used to memoize.

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Memoizing Fibonacci

Here’s how we might memoize the Fibonacci function:

(define fib-hash (make-hash))

(define (fib-memo n)

(cond [(not (hash-has-key? fib-hash n))

(hash-set!

fib-hash

n

(if (<= n 1)

n

(+ (fib-memo (- n 1))

(fib-memo (- n 2)))))])

(hash-ref fib-hash n))

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Stack space in recursive calls

Recursive calls can use a lot of memory, even when the results
are puny.

;; Sum of squares from 1 to n

(define (ssq n)

(if (= n 0)

0

(+ (sqr n) (ssq (- n 1)))))

Why does (ssq 4000000) run out of memory?

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Stack space in recursive calls

This function does the same thing, but takes an
extra argument that serves as an accumulator.

;; Sum of squares using tail recursion

(define (ssq-better n accum)

(if (= n 0)

accum

(ssq-better (- n 1)

(+ (sqr n) accum))))

Now (ssq-better 4000000 0) actually works!

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Tail recursion

The second version worked because there was no need to make
a stack of recursive calls.

A function is tail recursive if its output expression in every
recursive case is only the recursive call.

In Scheme, this means the recursive call is outermost
in the returned expression.

ssq-better is better because it is tail recursive!

Unit 3

SI 413

Pure
Functional
Programming

Lambda

Side Effects

Efficiency

Tail recursion for Fibonacci

To implement tail recursion we usually make a helper function:

(define (fib-helper n i fib-of-i fib-of-i +1)

(if (= i n)

fib-of-i

(fib-helper

n

(+ i 1)

fib-of-i +1

(+ fib-of-i

fib-of-i +1))))

The main function then becomes:

(define (fib-tail n) (fib-helper n 0 0 1))

