SI 413 Fall 2012: Homework 4

Your name:

Due: Friday, 14 September, before class Problem Self-assessment | Final assessment

Instructions: Review the course honor policy for written
homeworks. 1

This cover sheet must be the front page of what you hand in.
Fill out the left column in the table to the right after we go
over each problem in class, according to the rubric below.

This rubric is also on the website, in more detail, under
“Other Stuff” — “Grading Rubrics”.

Make sure all problems are submitted IN ORDER.

e 5: Solution is completely correct, concisely presented, 4
and neatly written.

e 4: The solution is mostly correct, but one or two minor
details were missed, or the presentation could be more 5
concise.

e 3: The main idea is correct, but there are some signifi-
cant mistakes. The presentation is somewhat sloppy or
confused.

e 2: A complete effort was made, but the result is mostly
incorrect. There may be some basic misunderstandings
of the topic or the problem.

e 1: The beginning of an attempt was made, but the work
is clearly incomplete.

e 0: Not submitted.

Comments or suggestions about this homework:

Comments or suggestions about the course so far:

Citations (other students, websites, ...):



Use a separate sheet of paper for your answers! Many of these exercises are programming exercises, but you do
not need to submit them electronically. Everything should be submitted in one packet, all printed out for me to see.

1 Reverse order print

Write a function (print-reverse L) that takes a list L and prints its elements in reverse, one per line, and then returns
(void).

For example, calling (print-reverse ’(1 2 3)) should print

1
2
3

=N W

2 Pretty-print inches

Write a function (print-height inches) that takes a number of inches and prints the feet and inches nicely. For example,
calling (print-height 70) should cause the following to be printed:

1 b5 feet 10 inches

Once this works, make it nicer so that, for example (print-height 73) prints

1 6 feet 1 inch

(notice not inches) and (print-height 8) just prints

1 8 inches

and any other cases which seem sensible to you.

3 Pushups

A certain sports team scores points in varying increments (2, 3, 6, 7), and after each score, certain fans must perform a
number of push-ups corresponding to the total score at that time.

Write a function (pushups points) that takes the points from the most recent score, and returns the total amount of
push-ups that must be performed at that time. (You will have to use mutation!)

For example, if we start with (pushups 3), the returned value is 3. But if the next call is (pushups 7), the returned
value is 10, since that is the total score at that point.

4 Total Pushups

Using your pushups function from the last exercise, write a function (total-pushups L) that takes a list of scores L and
returns the total number of pushups performed.

There are a number of ways you could write this, but I want you to do it by using your pushups function from the last
exercise, along with map and apply.

For example, (total-pushups ’(3 7)) should return 13, but (total-pushups ’(7 3)) should return 17.



5 Memoized Efficiency Counter

In class we showed two versions of the Fibonacci function:

(define (fib n)
(if (<= n 1)
n
(+ (fib (- n 1))
(fib (- n 2)))))

g W N e

and the memoized version:

1 (define fib-hash (make-hash))

2

3 (define (fib-memo n)

4 (cond [(not (hash-has-key? fib-hash n))
5 (hash-set!

6 fib-hash

7 n

8 (if (<= n 1)

9 n

10 (+ (fib-memo (- n 1))

11 (fib-memo (- n 2)))))1)
12 (hash-ref fib-hash n))

I want you to count how many times each of these functions is called recursively in order to compute the 30’th Fibonacci
number. Create two global variables fib-count and fib-memo-count, each initialized to 0, and an instruction in each of
the £ib function and the fib-memo function to increment this counter (increase by 1) every time the function is called.

Tell me how many times £ib is called recursively to compute (£fib 30), and how many times fib-memo is called recursively
to compute (fib-memo 30).

6 Tail Recursion
Write new definitions for the following two functions from Homework 2 so that they are tail-recursive:

a) Write a recursive function split-digits that takes a number n and returns a list with the digits of n, in reverse.

b) Write a function called count-down which takes a positive integer n and produces a list with the integers from n
down to 1, in that order.



	Reverse order print
	Pretty-print inches
	Pushups
	Total Pushups
	Memoized Efficiency Counter
	Tail Recursion

