
Class 23: Control Stuctures:
For loops, Iterators, and GOTOs

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 23 Fall 2011 1 / 15



Homework Review

1 Write a Java program to verify:
I Primitive type variables follow the value model of variables.
I Object type variables follow the reference model of variables.
I Assignment statements can be r-values.

2 Write a C++ program to verify:
I Normal variables - including user-defined objects and structs, follow the

value model.
I Reference variables, created using the & symbol, follow the reference

model.
I Assignment statements can be r-values or l-values.

Roche (USNA) SI413 - Class 23 Fall 2011 2 / 15



Control Flow

The control flow of a program is the way an execution moves from
statement to statement.
The textbook breaks it down into:

Sequencing (do the next thing)

Selection (pick something to do, e.g. if , switch)

Iteration (repeat something, e.g. while, for)

Recursion

Unstructured (e.g. goto)

Roche (USNA) SI413 - Class 23 Fall 2011 3 / 15



Unstructured flow: GOTO

In the beginning, there was GOTO. And GOTO was good.

Directly jumps from one place (the goto) to another (the label)

Corresponds exactly to machine code

Very efficient

Can cause some problems. . .

Roche (USNA) SI413 - Class 23 Fall 2011 4 / 15



Good Use of Goto?

Say we want to print a vector, comma-separated, like “1, 2, 3”.

This solution prints an extra comma!

vector < i n t > v;

// ...

i n t i = 0;

wh i l e (i < v.size ()) {

cout << v[i] << ” , ”;
++i;

}

cout << endl;

Roche (USNA) SI413 - Class 23 Fall 2011 5 / 15



Good Use of Goto?

Say we want to print a vector, comma-separated, like “1, 2, 3”.

Here we “jump into the loop” with a goto:

vector < i n t > v;

// ...

i n t i = 0;

goto middle;

wh i l e (i < v.size ()) {

cout << ” , ”;
middle:

cout << v[i];

++i;

}

cout << endl;

Roche (USNA) SI413 - Class 23 Fall 2011 5 / 15



Good Use of Goto?

Say we want to print a vector, comma-separated, like “1, 2, 3”.

We could of course write the whole thing with gotos:

vector < i n t > v;

// ...

i n t i = 0;

goto middle;

top:

cout << ” , ”;
middle:

cout << v[i];

++i;

i f (i < v.size ()) goto top;

cout << endl;

Roche (USNA) SI413 - Class 23 Fall 2011 5 / 15



Goto Problems

They don’t play well with scopes.
(Restricting to local gotos avoids this.)

Can be used to cook up “spaghetti code” — hard to follow.

Hard to know where we are in the program,
i.e., hard to reason about the program’s correctness/performance.

Roche (USNA) SI413 - Class 23 Fall 2011 6 / 15



i n t x = 0;

char c;

goto rs;

fns:

i f (c != ’ 1 ’ && c != ’ 0 ’ ) goto er;

goto ns;

rd:

c = getchar ();

ns:

i f (c == ’ 1 ’ ) { x = x*2 + 1; goto rd; }

i f (c == ’ 0 ’ ) { x = x*2; goto rd; }

es:

i f (c == ’ ’ )
{

c = getchar ();

goto es;

}

i f (c == ’ \n ’ ) goto done;

er:

printf(” E r r o r !\ n”);
r e t u r n 1;

rs:

c=getchar ();

i f (c == ’ ’ ) goto rs;

e l s e goto fns;

done:

printf(”%i \n”,x);
Roche (USNA) SI413 - Class 23 Fall 2011 7 / 15



Spaghetti Code Example (courtesy Dr. Brown)

The preceding code reads a string of binary digits, possibly surrounded by
some spaces, and prints them out.

Upon encountering any formatting anomalies, an error message is printed.

Could you have figured that out?

Roche (USNA) SI413 - Class 23 Fall 2011 8 / 15



Structured Programming

Structured programming is probably all you have ever known.

Championed by Dijkstra in the pioneering paper “GOTO Statement
Considered Harmful” (1968).

Structured programming uses control structures such as functions, if ,
while, for , etc., even though these are mostly compiled into gotos.

Allows us to reason about programs, enforce modularity, write bigger and
better programs.

Roche (USNA) SI413 - Class 23 Fall 2011 9 / 15



Looping over a Collection

How would you write C++ code to loop over the elements of

an array?

a linked list?

a binary search tree?

How can we separate interface from implementation?

Roche (USNA) SI413 - Class 23 Fall 2011 10 / 15



Iterators

An iterator needs to be able to:

Get initialized over a collection.

Move forward (maybe backwards?) through a collection.

Fetch the current element

Know when it’s done.

In C++, an iterator overrides ++ and * to become an abstract pointer.

In most other languages (e.g., Java), an iterator has to extend an abstract
base type with next() and hasNext() methods.

Roche (USNA) SI413 - Class 23 Fall 2011 11 / 15



For-Each Loops

A for-each loop provides an even easier way to
loop over the elements of a collection.

Java example:

HashSet <String > hs;

// ...

f o r (String s : hs) {

System.out.println(s);

// This prints out all the strings in the HashSet.

}

This construct is supported by most modern languages.
Often there is a direct connection with iterators.
In some languages (e.g., Python), this is the only for loop.

Roche (USNA) SI413 - Class 23 Fall 2011 12 / 15



Dirty Switches

switch statements blur the line between structured and unstructured
programming.

Here’s my favorite solution to the “print with commas” problem:

vector < i n t > v;

// ...

i n t i = 0;

sw i tch (v.empty ()) {

f o r (; i < v.size (); ++i) {

cout << ” , ”;
case f a l s e :

cout << v[i];

}

}

cout << endl;

Roche (USNA) SI413 - Class 23 Fall 2011 13 / 15



Advanced Topics

There’s a lot more we could talk about!

Unwinding (for inside-out gotos)

Jumping out of a loop (break, continue)

Labeled breaks

Generators

Roche (USNA) SI413 - Class 23 Fall 2011 14 / 15



Class outcomes

You should know:

What structured vs unstructured programmings is.

Structured programming constructs:
sequencing, selection, iteration, recursion

Why GOTOs might be “considered harmful”

Why GOTOs are useful sometimes

What an iterator is, and where/how/why they are used.

What a for-each loop is, and where/how/why they are used.

Roche (USNA) SI413 - Class 23 Fall 2011 15 / 15


