
Class 21: More on Functions:
Macros, Lazy evaluation, Built-ins, and Operators

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 21 Fall 2011 1 / 16

Homework Review

new f := lambda a {

new g := lambda b { ret := b + b/2; };

new h := lambda c {

new x := a*c;

ret := lambda d { ret := g(d) < x; };

};

ret := h;

};

new foo := f(3)(4);

w r i t e foo (8);

Draw the frames and closures, then show how GC by reference
counting and GC by mark-and-sweep would work.

Roche (USNA) SI413 - Class 21 Fall 2011 2 / 16

Different kinds of functions

The code f(5) here is definitely a function call:

i n t f(i n t x) { r e t u r n x + 6; }

i n t main() {

cout << f(5) << endl;

r e t u r n 0;

}

What else is a function call?

Roche (USNA) SI413 - Class 21 Fall 2011 3 / 16

Different kinds of functions

The code f(5) here is definitely a function call:

i n t f(i n t x) { r e t u r n x + 6; }

i n t main() {

cout << f(5) << endl;

r e t u r n 0;

}

What else is a function call?

Roche (USNA) SI413 - Class 21 Fall 2011 3 / 16

Operators

Say we have the following C++ code:

i n t mod (i n t a, i n t b) {

r e t u r n a - (a/b)*b;

}

What is the difference between
23 % 5

and
mod(23, 5)

Roche (USNA) SI413 - Class 21 Fall 2011 4 / 16

Are Operators Functions?

It’s language dependent!

Scheme: Every operator is clearly just like any other function.
Yes, they can be re-defined at will.

C/C++: Operators are functions, but they have a special syntax.
The call x + y is syntactic sugar for either operator+(x, y) or
x.operator+(y).

Java: Can’t redefine operators; they only exist for some built-in types.
So are they still function calls?

Roche (USNA) SI413 - Class 21 Fall 2011 5 / 16

Built-ins

A built-in function looks like a normal function call, but instead makes
something special happen in the compiler/interpreter.

Usually system calls are this way.
C/C++ are an important exception!

What is the difference between a built-in and a library function?

Library functions are still written in the language.

Roche (USNA) SI413 - Class 21 Fall 2011 6 / 16

Built-ins

A built-in function looks like a normal function call, but instead makes
something special happen in the compiler/interpreter.

Usually system calls are this way.
C/C++ are an important exception!

What is the difference between a built-in and a library function?
Library functions are still written in the language.

Roche (USNA) SI413 - Class 21 Fall 2011 6 / 16

Macros

Recall that C/C++ has a preprocessor stage that occurs before
compilation.
These are the commands like #include, #ifndef, etc.

#define defines a macro. It corresponds to textual substitution before
compilation.

Roche (USNA) SI413 - Class 21 Fall 2011 7 / 16

Constant Macros

Here’s an example of a basic macro that you might see somewhere:

The program

#d e f i n e PI 3.14159

double circum (double radius)

{ r e t u r n 2*PI*radius; }

gets directly translated by the preprocessor to

double circum (double radius)

{ r e t u r n 2*3.14159* radius; }

before compilation!

Roche (USNA) SI413 - Class 21 Fall 2011 8 / 16

Macro Issues #1

What if we wrote the last example differently:

#d e f i n e PI 3.14159

#d e f i n e TWOPI PI + PI

double circum (double radius)

{ r e t u r n TWOPI*radius; }

double circum (double radius)

{ r e t u r n 3.14159 + 3.14159* radius; }

Probably not what you wanted!

Roche (USNA) SI413 - Class 21 Fall 2011 9 / 16

Macro Issues #1

What if we wrote the last example differently:

#d e f i n e PI 3.14159

#d e f i n e TWOPI PI + PI

double circum (double radius)

{ r e t u r n TWOPI*radius; }

double circum (double radius)

{ r e t u r n 3.14159 + 3.14159* radius; }

Probably not what you wanted!

Roche (USNA) SI413 - Class 21 Fall 2011 9 / 16

Function-like Macros

We can also do things like this in C++:

#d e f i n e CIRCUM (radius) 2*3.14159* radius

...

cout << CIRCUM (1.5) + CIRCUM (2.5) << endl;

...

gets translated to

...

cout << 2*3.14159*1.5 + 2*3.14159*2.5 << endl;

...

(still prior to compilation)

Roche (USNA) SI413 - Class 21 Fall 2011 10 / 16

Macro Issues #2

What if we made the following function to print out the larger number:

#d e f i n e PRINTMAX (a,b) \

i f (a >= b) {cout << a << endl;} \

e l s e {cout << b << endl;}

This will work fine for PRINTMAX(5,10),
but what happens with the following:

i n t x = 5;

PRINTMAX (++x, 2)

Prints 7!

Roche (USNA) SI413 - Class 21 Fall 2011 11 / 16

Macro Issues #2

What if we made the following function to print out the larger number:

#d e f i n e PRINTMAX (a,b) \

i f (a >= b) {cout << a << endl;} \

e l s e {cout << b << endl;}

This will work fine for PRINTMAX(5,10),
but what happens with the following:

i n t x = 5;

PRINTMAX (++x, 2)

Prints 7!

Roche (USNA) SI413 - Class 21 Fall 2011 11 / 16

Thoughts on Macros

The advantage is SPEED - pre-compilation!

Notice: no types, syntactic checks, etc.
— lots of potential for nastiness!

The literal text of the arguments is pasted into the function wherever
the parameters appear.
This is called call by name.

The inline keyword in C++ is a compiler suggestion that may offer
a compromise.

Scheme has a very sophisticated macro definition mechanism
— allows one to define “special forms” like cond.

Roche (USNA) SI413 - Class 21 Fall 2011 12 / 16

Argument evaluation

Question: When are function arguments evaluated?

So far we have seen two options:

Applicative order: Arguments are evaluated
just before the function body is executed .
This is what we get in C, C++, Java, and even SPL.

Call by name: Arguments are evaluated every time they are used .
(If they aren’t used, they aren’t evaluated!)

Roche (USNA) SI413 - Class 21 Fall 2011 13 / 16

Lazy Evaluation

(Sometimes called normal order evaluation)

Combines the best of both worlds:

Arguments are not evaluated until they are used.

Arguments are only evaluated at most once.

(Related idea to memoization.)

Roche (USNA) SI413 - Class 21 Fall 2011 14 / 16

Lazy Examples

Note: lazy evaluation is great for functional languages (why?).

Haskell uses lazy evaluation for everything, by default.
Allows wonderful things like infinite arrays!

Scheme lets us do it manually with delayed evaluation,
using she built-in special forms delay and force.

Roche (USNA) SI413 - Class 21 Fall 2011 15 / 16

Class outcomes

You should know:

How operators compare with normal functions

How built-ins compare with normal functions

What macros are, why we might want to use them, and what dangers
they bring.

The difference between the three argument evaluation options:
applicative order, call by name, and lazy evalutation

You should be able to:

Perform simple macro translations of programs

Trace program execution using any of the three argument evaluations
schemes above

Roche (USNA) SI413 - Class 21 Fall 2011 16 / 16

