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Homework Review

new f := lambda a {

new g := lambda b { ret := b + b/2; };

new h := lambda c {

new x := a*c;

ret := lambda d { ret := g(d) < x; };

};

ret := h;

};

new foo := f(3)(4);

w r i t e foo (8);

Draw the frames and closures, then show how GC by reference
counting and GC by mark-and-sweep would work.
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Different kinds of functions

The code f(5) here is definitely a function call:

i n t f( i n t x) { r e t u r n x + 6; }

i n t main() {

cout << f(5) << endl;

r e t u r n 0;

}

What else is a function call?
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Operators

Say we have the following C++ code:

i n t mod ( i n t a, i n t b) {

r e t u r n a - (a/b)*b;

}

What is the difference between
23 % 5

and
mod(23, 5)
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Are Operators Functions?

It’s language dependent!

Scheme: Every operator is clearly just like any other function.
Yes, they can be re-defined at will.

C/C++: Operators are functions, but they have a special syntax.
The call x + y is syntactic sugar for either operator+(x, y) or
x.operator+(y).

Java: Can’t redefine operators; they only exist for some built-in types.
So are they still function calls?
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Built-ins

A built-in function looks like a normal function call, but instead makes
something special happen in the compiler/interpreter.

Usually system calls are this way.
C/C++ are an important exception!

What is the difference between a built-in and a library function?

Library functions are still written in the language.
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Macros

Recall that C/C++ has a preprocessor stage that occurs before
compilation.
These are the commands like #include, #ifndef, etc.

#define defines a macro. It corresponds to textual substitution before
compilation.
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Constant Macros

Here’s an example of a basic macro that you might see somewhere:

The program

#d e f i n e PI 3.14159

double circum (double radius)

{ r e t u r n 2*PI*radius; }

gets directly translated by the preprocessor to

double circum (double radius)

{ r e t u r n 2*3.14159* radius; }

before compilation!
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Macro Issues #1

What if we wrote the last example differently:

#d e f i n e PI 3.14159

#d e f i n e TWOPI PI + PI

double circum (double radius)

{ r e t u r n TWOPI*radius; }

double circum (double radius)

{ r e t u r n 3.14159 + 3.14159* radius; }

Probably not what you wanted!
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Function-like Macros

We can also do things like this in C++:

#d e f i n e CIRCUM (radius) 2*3.14159* radius

...

cout << CIRCUM (1.5) + CIRCUM (2.5) << endl;

...

gets translated to

...

cout << 2*3.14159*1.5 + 2*3.14159*2.5 << endl;

...

(still prior to compilation)
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Macro Issues #2

What if we made the following function to print out the larger number:

#d e f i n e PRINTMAX (a,b) \

i f (a >= b) {cout << a << endl;} \

e l s e {cout << b << endl;}

This will work fine for PRINTMAX(5,10),
but what happens with the following:

i n t x = 5;

PRINTMAX (++x, 2)

Prints 7!
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Thoughts on Macros

The advantage is SPEED - pre-compilation!

Notice: no types, syntactic checks, etc.
— lots of potential for nastiness!

The literal text of the arguments is pasted into the function wherever
the parameters appear.
This is called call by name.

The inline keyword in C++ is a compiler suggestion that may offer
a compromise.

Scheme has a very sophisticated macro definition mechanism
— allows one to define “special forms” like cond.
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Argument evaluation

Question: When are function arguments evaluated?

So far we have seen two options:

Applicative order: Arguments are evaluated
just before the function body is executed .
This is what we get in C, C++, Java, and even SPL.

Call by name: Arguments are evaluated every time they are used .
(If they aren’t used, they aren’t evaluated!)
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Lazy Evaluation

(Sometimes called normal order evaluation)

Combines the best of both worlds:

Arguments are not evaluated until they are used.

Arguments are only evaluated at most once.

(Related idea to memoization.)
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Lazy Examples

Note: lazy evaluation is great for functional languages (why?).

Haskell uses lazy evaluation for everything, by default.
Allows wonderful things like infinite arrays!

Scheme lets us do it manually with delayed evaluation,
using she built-in special forms delay and force.
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Class outcomes

You should know:

How operators compare with normal functions

How built-ins compare with normal functions

What macros are, why we might want to use them, and what dangers
they bring.

The difference between the three argument evaluation options:
applicative order, call by name, and lazy evalutation

You should be able to:

Perform simple macro translations of programs

Trace program execution using any of the three argument evaluations
schemes above
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