Different kinds of functions

The code £(5) here is definitely a function call:

int £f(int x) { return x + 6;

int main() {
cout << f(5) << endl;
return O;

o What else is a function call?

Roche (USNA) S1413 - Class 21

Fall 2011 1 / 14
Operators
Say we have the following C++ code:
int mod (int a, int b) {
return a - (a/b)x*b;
}
What is the difference between
23 % 5
and
mod (23, 5)
Roche (USNA) S1413 - Class 21 Fall 2011 2/14

Are Operators Functions?

It's language dependent!

o Scheme: Every operator is clearly just like any other function.

Yes, they can be re-defined at will.

o C/C++: Operators are functions, but they have a special syntax.

The call x + y is syntactic sugar for either operator+(x, y) or

x.operator+(y).

o Java: Can't redefine operators; they only exist for some built-in types.

So are they still function calls?

Roche (USNA) S1413 - Class 21

Fall 2011

3/14




Built-ins

something special happen in the compiler/interpreter.

o Usually system calls are this way.
C/C++ are an important exception!

o What is the difference between a built-in and a library function?

A built-in function looks like a normal function call, but instead makes

Roche (USNA) S1413 - Class 21 Fall 2011 4/ 14
Macros
Recall that C/C++ has a preprocessor stage that occurs before
compilation.
These are the commands like #include, #ifndef, etc.
#define defines a macro. It corresponds to textual substitution before
compilation.

Roche (USNA) S1413 - Class 21 Fall 2011 5/14

Constant Macros

Here's an example of a basic macro that you might see somewhere:

The program

#define PI 3.14159

double circum (double radius)
{ return 2xPIxradius; 7}

gets directly translated by the preprocessor to

double circum (double radius)
{ return 2%3.14159%radius; 1}

before compilation!

Roche (USNA) S1413 - Class 21

Fall 2011 6 /14




Macro Issues #1

What if we wrote the last example differently:

#define PI 3.14159
#define TWOPI PI + PI

double circum (double radius)
{ return TWOPI*radius; }

Roche (USNA) 51413 - Class 21

Fall 2011 7 /14

Function-like Macros

We can also do things like this in C++4:

#define CIRCUM (radius) 2%3.14159*radius

cout << CIRCUM(1.5) + CIRCUM(2.5) << endl;

gets translated to

cout << 2%3.14159%1.5 + 2%3.14159%2.5 << endl;

(still prior to compilation)

Roche (USNA) S1413 - Class 21 Fall 2011

8/ 14

Macro Issues #2

#define PRINTMAX (a,b) \

if (a > b) {cout << a << endl;} \
else {cout << b << endl;}

This will work fine for PRINTMAX (5, 10),
but what happens with the following:
int x = b5;

PRINTMAX (++x, 2)

Roche (USNA) S1413 - Class 21 Fall 2011

What if we made the following function to print out the larger number:

9/ 14




Thoughts on Macros

o The advantage is SPEED - pre-compilation!

o Notice: no types, syntactic checks, etc.
— lots of potential for nastiness!

o The literal text of the arguments is pasted into the function wherever

the parameters appear.
This is called call by name.

o The inline keyword in C++ is a compiler suggestion that may offer

a compromise.

o Scheme has a very sophisticated macro definition mechanism
— allows one to define “special forms” like cond.

Roche (USNA) S1413 - Class 21 Fall 2011

10 / 14

Argument evaluation

Question: When are function arguments evaluated?

So far we have seen two options:

o Applicative order: Arguments are evaluated
Jjust before the function body is executed.
This is what we get in C, C++, Java, and even SPL.

o Call by name: Arguments are evaluated every time they are used.
(If they aren’t used, they aren't evaluated!)

Roche (USNA) S1413 - Class 21 Fall 2011

11/ 14

Lazy Evaluation

(Sometimes called normal order evaluation)

Combines the best of both worlds:
o Arguments are not evaluated until they are used.

o Arguments are only evaluated at most once.

(Related idea to memoization.)

Roche (USNA) S1413 - Class 21 Fall 2011

12/ 14




Lazy Examples

Note: lazy evaluation is great for functional languages (why?).

o Haskell uses lazy evaluation for everything, by default.
Allows wonderful things like infinite arrays!

o Scheme lets us do it manually with delayed evaluation,
using she built-in special forms delay and force.

Roche (USNA) S1413 - Class 21 Fall 2011 13 / 14

Class outcomes

You should know:
o How operators compare with normal functions
o How built-ins compare with normal functions
o What macros are, why we might want to use them, and what dangers
they bring.
o The difference between the three argument evaluation options:
applicative order, call by name, and lazy evalutation

You should be able to:
o Perform simple macro translations of programs

o Trace program execution using any of the three argument evaluations
schemes above

Roche (USNA) S1413 - Class 21 Fall 2011 14 / 14




