
Review: Function privileges and lexical scope

The problem: how to look up non-local references in functions.

All functions are global: Every non-local reference is a global
variable. (Standard C/C++ rules.)

Nested functions: Use static links to look up the name in the most
recent instance of its defining scope.

2nd-class functions: Use dynamic links to look up the name in some
instance of its defining scope. It will definitely still be on the stack.

1st-class functions: Local variables must be allocated on the heap
using frames.

Roche (USNA) SI413 - Class 17 Fall 2011 1 / 7

Example: Local data in non-local context

Let’s define a stack in Scheme:

(define (make-stack)

(define stack ’())

(lambda (arg)

(if (eq? arg ’pop)
(l e t ((popped (car stack)))

(se t ! stack (cdr stack))

popped)

(se t ! stack (cons arg stack)))))

The local variable stack must be persistent.
How can we implement this?

Roche (USNA) SI413 - Class 17 Fall 2011 2 / 7

Frames

A frame is a data structure that represents the referencing environment of
some part of a program.
It contains:

A link to the parent frame.
This will correspond to the enclosing scope, (or null for the global
environment frame).

A symbol table mapping names to values.
(Notice: no stacks!)

Looking up a name means checking the current frame, and if the name is
not there, recursively looking it up in the parent frame.

Function calls create new frames.

Roche (USNA) SI413 - Class 17 Fall 2011 3 / 7

SPL Example for Frames

How would this program work using lexical scoping?

new x := 8;

new f := lambda n {

wr i t e n + x;

};

{ new x := 10;

f(2);

}

How do frames compare with activation records on the stack?

Can we use frames for dynamic scoping?

Roche (USNA) SI413 - Class 17 Fall 2011 4 / 7

Closures

How are functions represented as values (i.e., first-class)?
With a closure!

Recall that a closure is a function definition plus its referencing
environment.
In the frame model, we represent this as a pair of:

The function definition (parameters and body)

A link to the frame where the function was defined

Roche (USNA) SI413 - Class 17 Fall 2011 5 / 7

Example with closures

Draw out the frames and closures in a Scheme program using our stacks:

(define (make-stack)

(define stack ’())

(lambda (arg)

(if (eq? arg ’pop)
(l e t ((popped (car stack)))

(se t ! stack (cdr stack))

popped)

(se t ! stack (cons arg stack)))))

(define s (make-stack))

(s 5)

(s 20)

(s ’pop)

Roche (USNA) SI413 - Class 17 Fall 2011 6 / 7

Class outcomes

You should know:

How memory for local variables is allocated when in lexical scoping
with first-class functions

Why first class functions require different allocation rules

What is meant by closure, referencing environment, and frame.

You should be able to:

Draw the frames and closures in a program run using lexical or
dynamic scoping

Roche (USNA) SI413 - Class 17 Fall 2011 7 / 7

