
Parameter Passing Modes

Our programs are littered with function calls like f (x , 5).

This is a way of passing information from the call site
(where the code f(x,5) appears) to the function itself.

The parameter passing mode tells us how the information about the
arguments (e.g. x and 5) is communicated from the call site to the
function.

Roche (USNA) SI413 - Class 16 Fall 2011 1 / 14

Pass by Value

C/C++ use pass by value by default.
Java uses it for primitive types (int, boolean, etc.).

vo id f(i n t a) {

a = 2*a;

print(a);

}

i n t main() {

i n t x = 5;

f(x);

print(x);

r e tu rn 0;

}

What does this C++ program print?

10, then 5

Roche (USNA) SI413 - Class 16 Fall 2011 2 / 14

Pass by Value

In this scheme, the function recieves copies of the actual parameters.

The function cannot modify the originals, only its copies, which are
destroyed when the function returns.

Function arguments represent one-way communication from call site to
function.
(How can the function communicate back?)

Roche (USNA) SI413 - Class 16 Fall 2011 3 / 14

Pass by Reference

C++ supports reference parameters.
Perl and VB use this mode by default.

sub foo {

$_[0] = ” haha c h a n g e d by f o o ”;
}

my $y = ” t h i s i s mine ! ”;
foo($y);

p r i n t $y, ”\n ”;

You can guess what this Perl program prints. . .

Similar behavior happens if we wrote void f(int &a) {...}

in the previous C++ example.

Roche (USNA) SI413 - Class 16 Fall 2011 4 / 14

Pass by Reference

The formal parameters of the function become aliases for the actual
parameters!
Normally the actual parameters must be variable names
(or more generally, l-values. . .).

Function arguments now represent two-way communication.

References provide a way for functions to return multiple things.

They also avoid the (potentially expensive) overhead of copying without
having to deal with pointers.
This is especially useful with (large) data structures stored in objects.

Roche (USNA) SI413 - Class 16 Fall 2011 5 / 14

Variations

Pass by Value/Result
The initial value is passed in as a copy, and the final value on return
is copied back out to the actual parameter.
Behaves like pass-by-reference, unless the actual parameter is
accessed during the function call..

Pass by Sharing
This is what happens with objects in Java.
Actual and formal parameters both reference some shared data (i.e.,
the object itself).
But they are not aliases; functions can change the object that is
referenced, but cannot set which object is referenced.

Roche (USNA) SI413 - Class 16 Fall 2011 6 / 14

Pass by Value/Result

This is the default in Fortran, and for “in out” parameters in Ada:

--in file f.adb

procedure f(x : i n out Integer) i s
beg in

x := 10;

end f;

--in file test.adb

procedure test i s
y : Integer := 5;

begin
f(y);

Ada.Integer_Text_IO.Put(y);

end test;

Calling test prints 10, not 5!

Roche (USNA) SI413 - Class 16 Fall 2011 7 / 14

Pass by Sharing

This is the default in languages like Java, for non-primitive types:

c l a s s Share {

s t a t i c c l a s s Small {

pub l i c i n t x;

pub l i c Small(i n t thex) { x = thex; }

}

pub l i c s t a t i c vo id test(Small s) {

s.x = 10;

s = new Small (20);

}

pub l i c s t a t i c vo id main(String [] args) {

Small mainsmall = new Small (5);

test(mainsmall);

System.out.println(mainsmall.x);

}

}

Does this program print 5, 10, or 20?

10!

Roche (USNA) SI413 - Class 16 Fall 2011 8 / 14

Parameter Passing in Functional Languages

Why haven’t we talked about parameter passing in Haskell, Scheme, etc.?

In pure functional programming, it makes no difference!

Scheme actually uses pass by sharing.

Roche (USNA) SI413 - Class 16 Fall 2011 9 / 14

Method calls in objects

What does a call like obj.foo(x) do in an OOP language
such as C++ or Java?

foo must be a method defined in the class of obj.
The method also has access to what object it was called on
(called this in C++ and Java).

This is syntactic sugar for having a globally-defined method foo,
with an extra argument for “ this”.
So we can think of obj.foo(x) as foo(obj,x).

Roche (USNA) SI413 - Class 16 Fall 2011 10 / 14

Overloading

Function overloading is when the same name refers to many functions.
Which function to call is determined by the types of the arguments.

c l a s s A { vo id print() { cout << ” i n A” << endl; } };

c l a s s B { vo id print() { cout << ” i n B” << endl; } };

vo id foo(i n t a) { cout << a << ” i s an i n t \n ”; }

vo id foo(double a) { cout << a << ” i s a d o u b l e \n ”; }

i n t main() {

cout << (5 << 3) << endl;

A x; B y;

x.print ();

y.print ();

foo (5); foo (5.0);

}

How does overloading occur in this C++ example?

Roche (USNA) SI413 - Class 16 Fall 2011 11 / 14

Polymorphism

Sybtype polymorphism is like overloading, but the called function depends
on the object’s actual type, not its declared type!

Each object stores a virtual methods table (vtable) containing the address
of every virtual function.
This is inspected at run-time when a call is made.

See section 9.4 in your book if you want the details.

Roche (USNA) SI413 - Class 16 Fall 2011 12 / 14

Polymorphism example in C++

c l a s s Base { v i r t u a l vo id aha() = 0; };

c l a s s A : pub l i c Base {

vo id aha() { cout << ” I ’m an A ! ” << endl; }

};

c l a s s B : pub l i c Base {

vo id aha() { cout << ” I ’m a B ! ” << endl; }

}

i n t main(i n t argc) {

Base* x;

i f (argc == 1) // can’t know this at compile-time!

x = new A;

e l s e
x = new B;

x.aha(); // Which one will it call?

}

Roche (USNA) SI413 - Class 16 Fall 2011 13 / 14

Class outcomes

You should know:

The differences between the four parameter passing modes we have
discussed

How class method calls are typically interpreted by compilers

How overloading works with operators, classes, and functions

What subtype polymorphism is and its benefits and drawbacks

You should be able to:

Follow and create programming examples demonstrating pass by
value vs. pass by reference

Roche (USNA) SI413 - Class 16 Fall 2011 14 / 14

