
Implementing Dynamic Scope

For dynamic scope, we need a stack of bindings for every name.

These are stored in a Central Reference Table.
This primarily consists of a mapping from a name to a stack of values.

The Central Reference Table may also contain a stack of sets, each
containing identifiers that are in the current scope.
This tells us which values to pop when we come to an end-of-scope.

Roche (USNA) SI413 - Class 15 Fall 2011 1 / 9

Example: Central Reference Tables with Lambdas

{

new x := 0;

new i := -1;

new g := lambda z { ret := i; };

new f := lambda p {

new i := x;

i f (i > 0) { ret := p(0); }

e l s e {

x := x + 1;

i := 3;

ret := f(g);

}

};

wr i t e f(lambda y {ret := 0});

}

What gets printed by this (dynamically-scoped) SPL program?

Roche (USNA) SI413 - Class 15 Fall 2011 2 / 9

Example: Central Reference Tables with Lambdas

The i in

new g := lambda z { wr i t e i; };

from the previous program could be:

The i in scope when the function is actually called.

(dynamic scope, shallow binding)

The i in scope when g is passed as p to f

(dynamic scope, deep binding)

The i in scope when g is defined

(lexical scope)

Roche (USNA) SI413 - Class 15 Fall 2011 3 / 9

Reminder: The class of functions

Recall that functions in a programming language can be:

Third class: Never treated like variables

Second class: Passed as parameters to other functions

First class: Also returned from a function and assigned to a variable.

With lexical scoping , rules for binding get more complicated when
functions have more flexibility.

Roche (USNA) SI413 - Class 15 Fall 2011 4 / 9

Implementing Lexical Scope

What’s tough about lexical scope?

Non-local references.

Many older languages (C/C++, Fortran) avoid this by treating functions
as third-class and prohibiting nested functions.

Then every name has local scope (to a function or block), or global scope.

The result is compile-time name resolution — fast code!

Roche (USNA) SI413 - Class 15 Fall 2011 5 / 9

Lexical Scope with Nested Functions

What if we allow just things like this:

vo id f(i n t x) {

vo id g(i n t y) {

print(x+y);

}

i f (x < 5) g(10);

e l s e f(x-1);

}

i n t main() { f(6); }

We can use static links to find bindings in the most recent enclosing
function call.

Roche (USNA) SI413 - Class 15 Fall 2011 6 / 9

Lexical Scope with 2nd-Class Functions

What if functions have full 2nd-class privileges?

(de f i n e (f a g)

(de f i n e (h b) (d i s p l a y (+ a b)))

(i f (< a 5)

(f (g a) h)

(g a)))

(f 4 add1)

Bindings may be further down than most recent call.
We need dynamic links into the stack!

Roche (USNA) SI413 - Class 15 Fall 2011 7 / 9

Lexical Scope with 1st-Class Functions

What happens here?

{

new f := lambda x {

new g := lambda y { ret := x * y; };

ret := g;

};

new h := f(2);

wr i t e h(3);

}

There are some very non-local references here!
Where should we store local variables?

Roche (USNA) SI413 - Class 15 Fall 2011 8 / 9

Class outcomes

You should know:

What is meant by shallow/deep binding (roughly)

Why some language restrict functions to 3rd-class or 2nd-class

What static links are, and when they can and can’t be used

What non-local references are, and what kind of headaches they
create

You should be able to:

Draw the state of the Central Reference Table at any point in running
a dynamically-scoped program

Trace the run of a lexically-scoped program.

Roche (USNA) SI413 - Class 15 Fall 2011 9 / 9

