
Homework Review

i n t x = 10;

i n t foo(i n t y) {

x = y+5;

print(x);

}

i n t main() {

i n t x = 8;

foo (9);

print(x);

}

What happens in a dynamic vs. lexically scoped language?

Roche (USNA) SI413 - Class 14 Fall 2011 1 / 9

Another dynamic/lexical example

i n t width = 10;

char justification = ’ L ’ ;

vo id print(string s) {

i n t space = width - length(s);

i f (justification == ’ L ’) print(s);

f o r (i n t i=0; i<space; ++i) print(’ ’);
i f (justification == ’R ’) print(s);

}

Suppose we want a function foo that prints a series of names, using the
existing print function, all right-justified to 20 characters width. How
would we write this in a dynamic vs. a lexically scoped language?

Roche (USNA) SI413 - Class 14 Fall 2011 2 / 9

Another dynamic/lexical example

In a dynamically scoped language, we could just write

vo id foo(string names[], i n t n) {

i n t width = 20; char justification = ’R ’ ;
f o r (i n t i=0; i<n; ++i)

print(names[i]);

}

In a lexically-scoped language, we would have to change the global values
of width and justification, and then (to be nice) change them back
before returning.

What would the effect of nested function calls be on the above strategies?

Roche (USNA) SI413 - Class 14 Fall 2011 3 / 9

Nested scopes

Certain language structures create a new scope. For example:

i n t temp = 5 ;

// Sorts a two-element array.
void t w o s o r t (i n t A []) {

i f (A [0] > A [1]) {
i n t temp = A [0] ;
A [0] = A [1] ;
A [1] = temp ;

}
}

i n t main () {
i n t a r r = {2 , 1} ;
t w o s o r t (a r r) ;
cout << temp ; // Prints 5, even with dynamic scoping!

}

Roche (USNA) SI413 - Class 14 Fall 2011 4 / 9

Nested Scopes

In C++, nested scopes are made using curly braces ({ and }).
The scope resolution operator :: allows jumping between scopes manually.

In most languages, function bodies are a nested scope.
Often, control structure blocks also form nested scopes (e.g. for, if , etc.)

Lexical scoping creates a tree structure with the nested scopes.
Every name that is visible within some scope is either defined locally
within that scope, or is defined above somewhere on the path from the
root.

Roche (USNA) SI413 - Class 14 Fall 2011 5 / 9

Nested Functions

With nested functions, we have to consider scope and allocation rules.

void f (i n t a , i n t b) {

i n t g (i n t c) {
return a + c ;

}

i f (a == 0) return ;

p r i n t (g (g (b))) ;
f (a−1,b +1);

}

What integers are printed from the call f(5,5)?

15, 14, 13, 12, 11

Roche (USNA) SI413 - Class 14 Fall 2011 6 / 9

Declaration Order

In many languages, variables must be declared before they are used.
(Otherwise, the first use of a variable constitutes a declaration.)

In C/C++, the scope of a name starts at its declaration and goes to the
end of the scope. Every name must be declared before its first use,
because names are resolved as they are encountered.

C++ and Java make an exception for names in class scope.
Scheme doesn’t resolve names until they are evaulated.

Roche (USNA) SI413 - Class 14 Fall 2011 7 / 9

Declaration Order and Mutual Recursion

Consider the following familar code:

void exp () { atom () ; e x p t a i l () ; }

void atom () {
switch (peek ()) {

case LP : match (LP) ; exp () ; match (RP) ; break ;
// . . .

}
}

Mutual recursion in C/C++ requires forward declarations,
i.e., function prototypes.

These wouldn’t be needed within a class definition or in Scheme.
C# and Pascal solve the problem in a different way. . .

Roche (USNA) SI413 - Class 14 Fall 2011 8 / 9

Class outcomes

You should know:

Relative advantages of dynamic and lexical scoping.

The motivation behind declare-before-use rules, and their effect on
mutual recursion.

You should be able to:

Draw the tree of nested scopes for a lexically-scoped program.

Trace a program with nested function calls using lexical scoping.

Roche (USNA) SI413 - Class 14 Fall 2011 9 / 9

