
Class 12: Six-Week Wrap-up and Semantic Analysis I

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 12 Fall 2011 1 / 8

SLR(1)

SLR(1) parsers handle conflicts by using one token of look-ahead:

If the next token is an outgoing edge label of that state, shift and
move on.

If the next token is in the follow set of a non-terminal that we can
reduce to, then do that reduction.

Of course, there may still be conflicts, in which case the grammar is not
SLR(1). More look-ahead may be needed.

LALR parsers are similar, but they use more specialized FOLLOW sets
rather than the “global” follow sets that we have seen.

Roche (USNA) SI413 - Class 12 Fall 2011 2 / 8

Parse Trees

Beefed-up calculator language

run → ares STOP run | ares STOP

ares → VAR ASN bres | bres
bres → bres BOP res | res
res → res COMP exp | exp
exp → exp OPA term | term
term → term OPM factor | factor

factor → NUM | VAR | LP bres RP

Download today’s tarball and run make to get a parse tree for some string
in this language.

We notice that the parse tree is large and unwieldy with many unnecessary
nodes.

Roche (USNA) SI413 - Class 12 Fall 2011 3 / 8

Abstract Syntax Tree

Consider the program x := (5 + 3) * 2; x - 7;.
What should the AST for this look like?

Roche (USNA) SI413 - Class 12 Fall 2011 4 / 8

AST Properties

Remember, ASTs are not about the syntax!
They remove syntactic details from the program, leaving only the
semantics.

Typically, we show ordering (e.g. of ares’s in the previous example) by
nesting: the last child of a statement is the next statement, or null.

Are ASTs language independent?

Roche (USNA) SI413 - Class 12 Fall 2011 5 / 8

Static type checking

Consider the string (7 > 2) + 3;. This is an error.
But where should this error be identified?

In semantic analysis, i.e. the AST creation step!

Each node in the AST has a type, possibly ”void”.

Roche (USNA) SI413 - Class 12 Fall 2011 6 / 8

Static type checking with variables

What about the string x = 6 > 3; x * 12;?

We have to know the type of the variable x .
Otherwise, there is no way to detect this error at compile-time.

Only statically-typed languages allow this sort of checking.
Remember, in this class errors are a good thing!

Roche (USNA) SI413 - Class 12 Fall 2011 7 / 8

Class outcomes

You should know:

What an AST is, and why we need them.

The relationship between language, parse tree, and AST.

How static type-checking works, at a basic level.

You should be able to:

Draw a parse tree for a given string, given the grammar.

Determine the AST from the parse tree. Note that there is some
flexibility here!

Roche (USNA) SI413 - Class 12 Fall 2011 8 / 8

