
Class 10: Shift-reduce Parsing and CFSMs

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 10 Fall 2011 1 / 8

Bottom-up Parsing

A bottom-up (LR) parser reads tokens from left to right and maintains a
stack of terminal and non-terminal symbols.

At each step it does one of two things:

Shift: Read in the next token and push it onto the stack

Reduce: Recognize that the top of the stack is the r.h.s. of a
production rule, and replace that r.h.s. by the l.h.s., which will be a
non-terminal symbol.

The question is how to build an LR parser that applies these rules
systematically, deterministically, and of course quickly.

Roche (USNA) SI413 - Class 10 Fall 2011 2 / 8

Simple grammar for LR parsing

Consider the following example grammar:

S → E
E → E + T
E → T
T → n

Examine a bottom-up parse for the string n + n.

How can we model the “state” of the parser?

Roche (USNA) SI413 - Class 10 Fall 2011 3 / 8



Parser states

At any point during parsing, we are trying to expand one or more
production rules.

The state of a given (potential) expansion is represented by an “LR item”.

For our example grammar we have the following LR items:

S → • E E → E + T •
S → E • E → • T
E → • E + T E → T •
E → E • + T T → • n
E → E + • T T → n •

The • represents “where we are” in expanding that production.

Roche (USNA) SI413 - Class 10 Fall 2011 4 / 8

Pieces of the CFSM

The CSFM (Characteristic Finite State Machine) is a FA representing the
transitions between the LR item “states”.

There are two types of transitions:

Shift: consume a terminal or non-terminal symbol and move the • to
the right by one.

Example: T→•n T→n•n

Closure: If the • is to the left of a non-terminal, we have an
ε-transition to any production of that non-terminal with the • all the
way to the left.

Example: E→E+•T T→•nε

Roche (USNA) SI413 - Class 10 Fall 2011 5 / 8

Nondeterministic CFSM for example grammar

S→•EE→•E+T

E→E•+T

E→E+•T

E→E+T•

E→•T E→T•

T→•n

T→n•

S→E•Eε

εE
ε

+

T

ε

T

ε

n

Roche (USNA) SI413 - Class 10 Fall 2011 6 / 8



CFSM Properties

Observe that every state is accepting.

This is an NDFA that accepts valid stack contents.

The “trap states” correspond to a reduce operation:
Replace r.h.s. on stack with the l.h.s. non-terminal.

We can simulate an LR parse by following the CFSM on the current
stack symbols AND un-parsed tokens, then starting over after every
reduce operation changes the stack.

We can turn this into a DFA just by combining states.

Roche (USNA) SI413 - Class 10 Fall 2011 7 / 8

Deterministic CFSM for example grammar

S→•E
E→•E+T
E→•T
T→•n

0

S→E•
E→E•+T

1

E→T•
2

T→n•
3

E→E+•T
4

E→E+T•
5

E

T

n

+

T

Every state is labelled with a number.

Labels are pushed on the stack along with symbols.

After a reduce, go back to the state label left at the top of the stack.

Roche (USNA) SI413 - Class 10 Fall 2011 8 / 8


