
Class 9: Recursive descent and table-driven top-down
parsing

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 9 Fall 2011 1 / 11

Top-down parsing

1 Initialize the stack with S, the start symbol.;
2 while stack and input are both not empty do
3 if top of stack is a terminal then
4 Match terminal to next token
5 else
6 Pop nonterminal and replace with

r.h.s. from a derivation rule

7 Accept iff stack and input are both empty

Make choice on Step 6 by “peeking” ahead in the token stream.

Roche (USNA) SI413 - Class 9 Fall 2011 2 / 11

LL(1) Grammars

A grammar is LL(1) if it can be parsed top-down with just 1 token’s worth
of look-ahead.

Example grammar

S → T T
T → ab

T → aa

Is this grammar LL(1)?

Roche (USNA) SI413 - Class 9 Fall 2011 3 / 11



Common prefixes

The common prefix in the previous grammar causes a problem.

In this case, we can “factor out” the prefix:

LL(1) Grammar

S → T T
T → a X
X → b

X → a

Roche (USNA) SI413 - Class 9 Fall 2011 4 / 11

Left recursion

The other enemy of LL(1) is left recursion:

S → exp
exp → exp + NUM

exp → NUM

Why isn’t this LL(1)?

How could we “fix” it?

Roche (USNA) SI413 - Class 9 Fall 2011 5 / 11

Making grammars LL using tail rules

To make LL grammars, we usually end up adding extra “tail rules” for
list-like non-terminals.

For instance, the previous grammar can be rewritten as

S → exp
exp → NUM exptail

exptail → ε | + NUM exptail

This is now LL(1).

(Remember that ε is the empty string in this class.)

Roche (USNA) SI413 - Class 9 Fall 2011 6 / 11



Recall: Calculator language scanner

Token name Regular expression

NUM [0-9]+

OPA [+-]

OPM [*/]

LP (

RP )

STOP ;

Roche (USNA) SI413 - Class 9 Fall 2011 7 / 11

LL(1) grammar for calculator language

S → exp STOP

exp → term exptail
exptail → ε | OPA term exptail

term → sfactor termtail
termtail → ε | OPM factor termtail

sfactor → OPA factor | factor
factor → NUM | LP exp RP

How do we know this is LL(1)?

Roche (USNA) SI413 - Class 9 Fall 2011 8 / 11

Recursive Descent Parsers

A recursive descent top-down parser uses recursive functions for parsing
every non-terminal, and uses the function call stack implicitly instead of an
explicit stack of terminals and non-terminals.

If we also want the parser to do something, then these recursive functions
will return values. They will also sometimes take values as parameters.

(See posted examples.)

Roche (USNA) SI413 - Class 9 Fall 2011 9 / 11



Table-driven parsing

Auto-generated top-down parsers are usually table-driven.

The program stores an explicit stack of expected symbols, and applies
rules using a nonterminal-token table.

Using the expected non-terminal and the next token, the table tells which
production rule in the grammar to apply.

Applying a production rule means pushing some symbols on the stack.

(See posted example.)

Roche (USNA) SI413 - Class 9 Fall 2011 10 / 11

Automatic top-down parser generation

In table-driven parsing, the code is always the same;
only the table is different depending on the language.

Top-down parser generators first generate two sets for each non-terminal:

FIRST: Which tokens can appear at the beginning of a non-terminal

FOLLOW: Which non-terminals can come after this non-terminal

There are simple rules for generating FIRST and FOLLOW, and then for
generating the parsing table using these sets.

Roche (USNA) SI413 - Class 9 Fall 2011 11 / 11


