
Class 8: Parsing: Top-down and Bottom-up

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 8 Fall 2011 1 / 12

Structure of a Scanner

How does a scanner generation tool like flex actually work?

1 An NDFA is generated from each regular expression.
Final states are marked according to which rule is used.

2 These NDFAs are combined into a single NDFA.

3 The big NDFA is converted into a DFA. How are final states marked?

4 The final DFA is minimized for efficiency.
The DFA is usually represented in code with a state-character array .

Roche (USNA) SI413 - Class 8 Fall 2011 2 / 12

Look-ahead in scanners

The “maximal munch” rule says to always return the longest possible
token.

But how can the DFA tell if it has the maximal munch?

Usually, just stop at a transition from accepting to non-accepting state.
This requires one character of look-ahead .

Is this good enough for any set of tokens?

Roche (USNA) SI413 - Class 8 Fall 2011 3 / 12



Parsing

Parsing is the second part of syntax analysis.

We use grammars to specify how tokens can combine.
A parser uses the grammar to construct a parse tree
with tokens at the leaves.

Scanner: Specified with regular expressions, generates a DFA
Parser: Specified with context-free grammar, generates a . . .

Roche (USNA) SI413 - Class 8 Fall 2011 4 / 12

Generalize or Specialize?

Parsing a CFG deterministically is hard:
requires lots of computing time and space.

By (somewhat) restricting the class of CFGs, we can parse much faster.

For a program consisting of n tokens, we want O(n) time,
using a single stack, and not too much look-ahead.

Roche (USNA) SI413 - Class 8 Fall 2011 5 / 12

Parsing Strategies

Top-Down Parsing:

Constructs parse tree starting at the root

“Follow the arrows” — carry production rules forward

Requires predicting which rule to apply for a given nonterminal.

LL: Left-to-right, Leftmost derivation

Bottom-Up Parsing:

Constructs parse tree starting at the leaves

“Go against the flow” — apply reduction rules backwards

Requires

LR: Left-to-right, Rightmost defivation

Roche (USNA) SI413 - Class 8 Fall 2011 6 / 12



Parsing example

Simple grammar

S → T T
T → aa

T → bb

Parse the string aabb, top-down and bottom-up.

Roche (USNA) SI413 - Class 8 Fall 2011 7 / 12

Top-down parsing

1 Initialize the stack with S, the start symbol.;
2 while stack and input are both not empty do
3 if top of stack is a terminal then
4 Match terminal to next token
5 else
6 Pop nonterminal and replace with

r.h.s. from a derivation rule

7 Accept iff stack and input are both empty

Make choice on Step 6 by “peeking” ahead in the token stream.

Roche (USNA) SI413 - Class 8 Fall 2011 8 / 12

LL(1) Grammars

A grammar is LL(1) if it can be parsed top-down with just 1 token’s worth
of look-ahead.

Example grammar

S → T T
T → ab

T → aa

Is this grammar LL(1)?

Roche (USNA) SI413 - Class 8 Fall 2011 9 / 12



Common prefixes

The common prefix in the previous grammar causes a problem.

In this case, we can “factor out” the prefix:

LL(1) Grammar

S → T T
T → a X
X → b

X → a

Roche (USNA) SI413 - Class 8 Fall 2011 10 / 12

Left recursion

The other enemy of LL(1) is left recursion:

S → exp
exp → exp + NUM

exp → NUM

Why isn’t this LL(1)?

How could we “fix” it?

Roche (USNA) SI413 - Class 8 Fall 2011 11 / 12

Handling Errors

How do scanning errors occur?
How can we handle them?

How do parsing errors occur?
How can we handle them?

“Real” scanners/parsers also tag everything with filename & line number
to give programmers extra help.

Roche (USNA) SI413 - Class 8 Fall 2011 12 / 12


