
Class 4: Lambda

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 4 Fall 2011 1 / 8

Procedures are First-Class

Functional languages generally give procedures first-class status:

They can be given names.

They can be arguments to procedures.

They can be returned by procedures.

They can be stored in data structures (e.g. lists).

Roche (USNA) SI413 - Class 4 Fall 2011 2 / 8

Procedures returning procedures

Example: Get the Java division procedure for a sample input

(define (java-divider sample)

(if (inexact? sample) / quotient))

Useful when combined with higher-order procedures:

(define (java-divide-all tops bottoms)

(map (java-divider (car tops)) tops bottoms))

Roche (USNA) SI413 - Class 4 Fall 2011 3 / 8



Storing procedures in a list

Maybe we want to apply different functions to the same data:

(define (apply-all alof alon)

(if (null? alof)

’()

(cons ((car alof) alon)

(apply-all (cdr alof) alon))))

Then we can get statistics on a list of numbers:
(apply-all (list length mean stdev) (list 2.4 5 3.2 3 8))

Roche (USNA) SI413 - Class 4 Fall 2011 4 / 8

Interruption: History Class

The lambda calculus is a way of
expressing computation

Developed by Alonzo Church (left) in
the 1930s

Believed to cover everything that is
computable (Church-Turing thesis)

Everything is a function: numbers,
points, booleans, . . .

Functions are just a kind of data!

Roche (USNA) SI413 - Class 4 Fall 2011 5 / 8

Anonymous functions in Scheme

lambda is a special form in Scheme that creates a nameless function:

(lambda (arg1 arg2 ...)

expr-using-args)

(define (make-adder n) (lambda (x) (+ n x)))

(define (double f) (lambda (x) (f (f x))))

Roche (USNA) SI413 - Class 4 Fall 2011 6 / 8



Lambda with higher-order functions

Remember the range function:
(define (range a b)

(if (> a b) null (cons a (range (+ a 1) b))))

Write the following functions without using recursion.

1 (half L) divides each element in L by 2.

2 (facsum n) gives the sum of all integers less than n that divide n.

3 (my-factorial n) computes n!

4 (my-length L) returns the length of the list L.

Roche (USNA) SI413 - Class 4 Fall 2011 7 / 8

Behind the curtain

You have already been using lambda!

(define (f x1 x2 ... xn) exp-using-xs)

is the same as

(define f (lambda (x1 ... xn) exp-using-xs))

(let ((x1 e1) (x2 e2) ... (xn en)) exp-using-xs)

is the same as

((lambda (x1 x2 ... xn) exp-using-xs) e1 e2 ... en)

Roche (USNA) SI413 - Class 4 Fall 2011 8 / 8


