Class 4: Lambda

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 4 Fall 2011

1/8

Procedures are First-Class

Functional languages generally give procedures first-class status:

o They can be given names.
o They can be arguments to procedures.
o They can be returned by procedures.

o They can be stored in data structures (e.g. lists).

Roche (USNA) S1413 - Class 4 Fall 2011

2/8

Procedures returning procedures

Example: Get the Java division procedure for a sample input
(define (java-divider sample)
(if (inexact? sample) / quotient))
Useful when combined with higher-order procedures:

(define (java-divide-all tops bottoms)
(map (java-divider (car tops)) tops bottoms))

Roche (USNA) SI413 - Class 4 Fall 2011

3/8




Storing procedures in a list

Maybe we want to apply different functions to the same data:

(define (apply-all alof alomn)
(if (null? alof)
70
(cons ((car alof) alon)
(apply-all (cdr alof) alomn))))

Then we can get statistics on a list of numbers:
(apply-all (list length mean stdev) (list 2.4 5 3.2 3 8))

Roche (USNA) SI413 - Class 4 Fall 2011

4/8

Interruption: History Class

o The lambda calculus is a way of
expressing computation

o Developed by Alonzo Church (left) in
the 1930s

o Believed to cover everything that is
computable (Church-Turing thesis)

o Everything is a function: numbers,
points, booleans, ...

o Functions are just a kind of data!

Roche (USNA) S1413 - Class 4 Fall 2011

5/8

Anonymous functions in Scheme

lambda is a special form in Scheme that creates a nameless function:

(lambda (argl arg2 ...)
expr-using-args)

Roche (USNA) S1413 - Class 4 Fall 2011

6/8




Lambda with higher-order functions

Remember the range function:
(define (range a b)
(if (> a b) null (cons a (range (+ a 1) b))))

Write the following functions without using recursion.
@ (half L) divides each element in L by 2.
@ (facsum n) gives the sum of all integers less than n that divide n.

@ (my-factorial n) computes n!

@ (my-length L) returns the length of the list L.

Roche (USNA) SI413 - Class 4 Fall 2011 7/8

Behind the curtain

You have already been using lambda!

o (define (f x1 x2 ... =xn) exp-using-xs)
is the same as

o (let ((x1 el) (x2 e2) ... (xn en)) exp-using-xs)
is the same as

Roche (USNA) S1413 - Class 4 Fall 2011 8/8




