Class 3: More on evaluation

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) S1413 - Class 3



Scheme is lists!

Everything in Scheme that looks like a list is a list.
You have been using lists, but usually asking Scheme to evaluate them.

Scheme evaluates a list by using a general rule:

@ First, turn a list of expressions (el e2 e3 ...) into a list of atoms
(al a2 a3 ...) by recursively evaluating each el, e2, etc.
@ Then, apply the procedure al to the arguments a2, a3, ...

Anything that is not a list (i.e., an atom) just evaluates to itself.

Roche (USNA) S1413 - Class 3 Fall 2011 2 /10



Special Forms

The only exceptions to the evaluation rule are the special forms.
Special forms we have seen: define, if, cond, and, or.

What makes these “special” is that they
do not (always) evaluate (all) their arguments.

Example: evaluating (5) gives an error, but
(if #f (5) 6) just returns 6 — it never evaluates the “(5)" part.

Roche (USNA) S1413 - Class 3 Fall 2011

3/10



Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

@ Try (eval (list + 1 2))

Roche (USNA) S1413 - Class 3 Fall 2011 4 /10



Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

@ Try (eval (list + 1 2))
We can also ask Scheme not to evaluate an expression by using the special

form quote.

e Try (quote (+ 1 2))

Roche (USNA) S1413 - Class 3 Fall 2011 4 /10



Quoting

There is a convenient shortcut of quote: Putting an apostrophe before
the expression-to-be-quoted.

For example, > (1 2 3) is the same as (1ist 1 2 3).

This gives us a synonym for null: > ().
In fact, ’ () is the preferred Scheme way of writing an empty list.

Creating nested lists also becomes trivial:
7(1 (2 3) 4) isequivalent to (1ist 1 (list 2 3) 4)

Roche (USNA) S1413 - Class 3 Fall 2011 5/ 10



Symbols

An unevaluated identifier is called a symbol.
(Note: the predicate symbol? is useful here.)

Symbols are useful beyond evaluation and quoting.
We often use them like ENUMs in C4+.

Examples: units, months, grades

Symbols are often used to tag data: (cons 10.3 ’feet)

Roche (USNA) S1413 - Class 3 Fall 2011

6/ 10



Some exercises

@ Write a function sign that takes a number and returns the symbol
’positive, ’negative, or ’zero, as appropriate.

@ Write a simple quoted expression that is equivalent to
(cons (cons 3 (cons ’q null)) (cons ’a null)).

© Write a function that takes a list of numbers and adds them up using
the + function. (Hint: first build this expression using cons, then
evaluate it using eval.)

@ Repeat #3 using the built-in apply function.

Roche (USNA) S1413 - Class 3 Fall 2011 7 /10



The need for local variables

This code finds the largest number in a list:

(define (Ilmax L)
(cond [(null? (cdr L)) (car L)]
[(>= (car L) (lmax (cdr L))) (car L)]
[else (Imax (cdr L))I1))

Roche (USNA) S1413 - Class 3



The need for local variables

This code finds the largest number in a list:

(define (Ilmax L)
(cond [(null? (cdr L)) (car L)]
[(>= (car L) (Ilmax (cdr L))) (car L)]
[else (Imax (cdr L))I1))

This has worst-case exponential running time!

@ We need a way to save the value of (lmax (cdr L)).

Roche (USNA) S1413 - Class 3



The let special form

Scheme provides let as a way to re-use temporary values:

(define (Imax L)
(if (null? (cdr L))
(car L)
(let ((rest-max (Imax (cdr L))))
(if (>= (car L) rest-max)
(car L)
rest-max))))

Note the extra parentheses — these allow multiple temporary variables:
(let ((a 5) (b 6)) (+ ab))=11

Roche (USNA) S1413 - Class 3



More exercises

@ Write a Scheme expression that computes the formula
5x%y + 3xy — x + 4y at the point (x,y) = (1.5,2.5).

@ Write a Scheme function (f x y) that computes the formula
5x%y + 3xy — x + 4y at any given point.

© Simulate the following Java code as a series of nested lets:
int x = 1;
X += 3;
x *= 12;

return Xx;

Roche (USNA) S1413 - Class 3 Fall 2011

10 / 10



