
Class 3: More on evaluation

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 3 Fall 2011 1 / 10

Scheme is lists!

Everything in Scheme that looks like a list is a list.
You have been using lists, but usually asking Scheme to evaluate them.

Scheme evaluates a list by using a general rule:

First, turn a list of expressions (e1 e2 e3 ...) into a list of atoms
(a1 a2 a3 ...) by recursively evaluating each e1, e2, etc.

Then, apply the procedure a1 to the arguments a2, a3, . . .

Anything that is not a list (i.e., an atom) just evaluates to itself.

Roche (USNA) SI413 - Class 3 Fall 2011 2 / 10

Special Forms

The only exceptions to the evaluation rule are the special forms.

Special forms we have seen: define, if, cond, and, or.

What makes these “special” is that they
do not (always) evaluate (all) their arguments.

Example: evaluating (5) gives an error, but
(if #f (5) 6) just returns 6 — it never evaluates the “(5)” part.

Roche (USNA) SI413 - Class 3 Fall 2011 3 / 10



Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

Try (eval (list + 1 2))

We can also ask Scheme not to evaluate an expression by using the special
form quote.

Try (quote (+ 1 2))

Roche (USNA) SI413 - Class 3 Fall 2011 4 / 10

Quoting

There is a convenient shortcut of quote: Putting an apostrophe before
the expression-to-be-quoted.
For example, ’(1 2 3) is the same as (list 1 2 3).

This gives us a synonym for null: ’().
In fact, ’() is the preferred Scheme way of writing an empty list.

Creating nested lists also becomes trivial:
’(1 (2 3) 4) is equivalent to (list 1 (list 2 3) 4)

Roche (USNA) SI413 - Class 3 Fall 2011 5 / 10

Symbols

An unevaluated identifier is called a symbol.
(Note: the predicate symbol? is useful here.)

Symbols are useful beyond evaluation and quoting.
We often use them like ENUMs in C++.
Examples: units, months, grades

Symbols are often used to tag data: (cons 10.3 ’feet)

Roche (USNA) SI413 - Class 3 Fall 2011 6 / 10



Some exercises

1 Write a function sign that takes a number and returns the symbol
’positive, ’negative, or ’zero, as appropriate.

2 Write a simple quoted expression that is equivalent to
(cons (cons 3 (cons ’q null)) (cons ’a null)).

3 Write a function that takes a list of numbers and adds them up using
the + function. (Hint: first build this expression using cons, then
evaluate it using eval.)

4 Repeat #3 using the built-in apply function.

Roche (USNA) SI413 - Class 3 Fall 2011 7 / 10

The need for local variables

This code finds the largest number in a list:

(define (lmax L)

(cond [(null? (cdr L)) (car L)]

[(>= (car L) (lmax (cdr L))) (car L)]

[else (lmax (cdr L))]))

This has worst-case exponential running time!

We need a way to save the value of (lmax (cdr L)).

Roche (USNA) SI413 - Class 3 Fall 2011 8 / 10

The let special form

Scheme provides let as a way to re-use temporary values:

(define (lmax L)

(if (null? (cdr L))

(car L)

(let ((rest-max (lmax (cdr L))))

(if (>= (car L) rest-max)

(car L)

rest-max))))

Note the extra parentheses — these allow multiple temporary variables:
(let ((a 5) (b 6)) (+ a b)) ⇒ 11

Roche (USNA) SI413 - Class 3 Fall 2011 9 / 10



More exercises

1 Write a Scheme expression that computes the formula
5x2y + 3xy − x + 4y at the point (x , y) = (1.5, 2.5).

2 Write a Scheme function (f x y) that computes the formula
5x2y + 3xy − x + 4y at any given point.

3 Simulate the following Java code as a series of nested lets:

int x = 1;

x += 3;

x *= 12;

return x;

Roche (USNA) SI413 - Class 3 Fall 2011 10 / 10


