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Homework Review

@ |s reverse engineering possible?
@ Syntax vs. Semantics!

@ Stages of interpretation
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Lists in Scheme

Remember how a singly-linked list works:

»
>

How can we make linked lists in Scheme?
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Lists in Scheme

Remember how a singly-linked list works:

How can we make linked lists in Scheme?

@ Use cons for every node

@ Use null for the empty list

The above list is written (cons 1 (cons 2 (cons 3 null)))
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Using and building lists

@ null is an empty list.

@ For an item a and list L, (cons a L) produces a list starting with a,
followed by all the elements in L.

@ (car L) produces the first thing in a non-empty list L.

@ (cdr L) produces a list with the first item of L removed.

@ DrScheme prints the list (cons 1 (cons 2 (cons 3 null))) as
(12 3)

@ Lists can be nested.
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Exercises

Using only cons, null, car, and cdr,

@ Write an expression to produce the nested list (3 (4 5) 6).

@ Write a function (get2nd L) that returns the second element in the
list L.

© Using recursion, write a function split-digits that takes a
number n and returns a list with the digits of n, in reverse.
For example, (split-digits 413) should produce the list (3 1 4).
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Useful list functions

@ (list a b ¢ ...) builds a list with the elements a, b, c, ...

@ cXXXr, where X is a or d. A shortcut for long expressions like
(cdr (car (car (cdr L)))) — (cdaadr L)

@ (cons? L) — returns true iff L is a cons.
@ (null? L) — returns true iff L is an empty list.

o (append L1 L2) — returns a list with the elements of L1, followed
by those of L2.
Can you write this function?

Roche (USNA) S1413 - Class 2 Fall 2011 6 /11



Scheme grammar

Here is a CFG for the Scheme syntax we have seen so far:

CFG for Scheme

exprseq — expr | exprseq expr

expr — atom | ( exprseq )

atom — identifier | number | boolean

This is incredibly simple!
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Scheme is lists!

Everything in Scheme that looks like a list is a list.
Scheme evaluates a list by using a general rule:

@ First, turn a list of expressions (el e2 e3 ...) into a list of atoms
(al a2 a3 ...) by recursively evaluating each el, e2, etc.

@ Then, apply the procedure al to the arguments a2, a3, ...

The only exceptions are special forms such as define and cond that do
not evaluate all their arguments.
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Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

@ Try (eval (list + 1 2))
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Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

@ Try (eval (list + 1 2))
We can also ask Scheme not to evaluate an expression by using the (very)
special form quote.

e Try (quote (+ 1 2))

There is a convenient shortcut of quote: for example, > (+ 1 2).
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Symbols

An unevaluated identifier is called a symbol.
(Note: the predicate symbol? is useful here.)

Symbols are useful beyond evaluation and quoting.
We often use them like ENUMs in C4+.

Examples: units, months, grades

Symbols are often used to tag data: (cons 10.3 ’feet)
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More exercises

@ Write a function (my-and a b) that works similar to the built-in and
boolean function, but returns a symbol ’true or >false as
appropriate.

© Write a function that takes a list of numbers and adds them up using
the + function. (Hint: first build this expression using cons, then
evaluate it using eval.)

© Repeat #2 using the built-in apply function.
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