Class 2: Structures underlying evaluation

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) S1413 - Class 2

Homework Review

@ |s reverse engineering possible?
@ Syntax vs. Semantics!

@ Stages of interpretation

Roche (USNA) S1413 - Class 2 Fall 2011 2/11

Lists in Scheme

Remember how a singly-linked list works:

»
>

How can we make linked lists in Scheme?

Roche (USNA)

S1413 - Class 2

\ 4

Fall 2011

3/11

Lists in Scheme

Remember how a singly-linked list works:

How can we make linked lists in Scheme?

@ Use cons for every node

@ Use null for the empty list

The above list is written (cons 1 (cons 2 (cons 3 null)))

Roche (USNA) S1413 - Class 2 Fall 2011

3/11

Using and building lists

@ null is an empty list.

@ For an item a and list L, (cons a L) produces a list starting with a,
followed by all the elements in L.

@ (car L) produces the first thing in a non-empty list L.

@ (cdr L) produces a list with the first item of L removed.

@ DrScheme prints the list (cons 1 (cons 2 (cons 3 null))) as
(12 3)

@ Lists can be nested.

Roche (USNA) S1413 - Class 2 Fall 2011 4 /11

Exercises

Using only cons, null, car, and cdr,

@ Write an expression to produce the nested list (3 (4 5) 6).

@ Write a function (get2nd L) that returns the second element in the
list L.

© Using recursion, write a function split-digits that takes a
number n and returns a list with the digits of n, in reverse.
For example, (split-digits 413) should produce the list (3 1 4).

Roche (USNA) S1413 - Class 2 Fall 2011 5/11

Useful list functions

@ (list a b ¢ ...) builds a list with the elements a, b, c, ...

@ cXXXr, where X is a or d. A shortcut for long expressions like
(cdr (car (car (cdr L)))) — (cdaadr L)

@ (cons? L) — returns true iff L is a cons.
@ (null? L) — returns true iff L is an empty list.

o (append L1 L2) — returns a list with the elements of L1, followed
by those of L2.
Can you write this function?

Roche (USNA) S1413 - Class 2 Fall 2011 6 /11

Scheme grammar

Here is a CFG for the Scheme syntax we have seen so far:

CFG for Scheme

exprseq — expr | exprseq expr

expr — atom | (exprseq)

atom — identifier | number | boolean

This is incredibly simple!

Roche (USNA) S1413 - Class 2 Fall 2011 7/11

Scheme is lists!

Everything in Scheme that looks like a list is a list.
Scheme evaluates a list by using a general rule:

@ First, turn a list of expressions (el e2 e3 ...) into a list of atoms
(al a2 a3 ...) by recursively evaluating each el, e2, etc.

@ Then, apply the procedure al to the arguments a2, a3, ...

The only exceptions are special forms such as define and cond that do
not evaluate all their arguments.

Roche (USNA) S1413 - Class 2 Fall 2011 8 /11

Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

@ Try (eval (list + 1 2))

Roche (USNA) S1413 - Class 2 Fall 2011 9/11

Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

@ Try (eval (list + 1 2))
We can also ask Scheme not to evaluate an expression by using the (very)
special form quote.

e Try (quote (+ 1 2))

There is a convenient shortcut of quote: for example, > (+ 1 2).

Roche (USNA) S1413 - Class 2 Fall 2011 9/11

Symbols

An unevaluated identifier is called a symbol.
(Note: the predicate symbol? is useful here.)

Symbols are useful beyond evaluation and quoting.
We often use them like ENUMs in C4+.

Examples: units, months, grades

Symbols are often used to tag data: (cons 10.3 ’feet)

Roche (USNA) S1413 - Class 2 Fall 2011

10 /11

More exercises

@ Write a function (my-and a b) that works similar to the built-in and
boolean function, but returns a symbol ’true or >false as
appropriate.

© Write a function that takes a list of numbers and adds them up using
the + function. (Hint: first build this expression using cons, then
evaluate it using eval.)

© Repeat #2 using the built-in apply function.

Roche (USNA) S1413 - Class 2 Fall 2011 11 /11

