
Class 1: Introduction to Programming Languages

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 1 Fall 2011 1 / 10



Phases of Programming

What does programming actually involve?

Choose a language for the task

Learn the language

Write a program

Compile the program

Execute the program

Note: an interpreter essentially does compilation and execution
simultaneously, on-the-fly.

Roche (USNA) SI413 - Class 1 Fall 2011 2 / 10



Phases of Programming

What does programming actually involve?

Choose a language for the task

Learn the language

Write a program

Compile the program

Execute the program

Note: an interpreter essentially does compilation and execution
simultaneously, on-the-fly.

Roche (USNA) SI413 - Class 1 Fall 2011 2 / 10



Skill outcomes of SI 413

There are other goals on the course policy, but these are some things
you will be able to do in a few months:

1 Choose a programming language well-suited for a particular task.

2 Learn a new programming language quickly and with relative ease.

3 Understand the inner workings of compilers and interpreters and
become a better user of both.

Roche (USNA) SI413 - Class 1 Fall 2011 3 / 10



What is a programming language

(discussion)

Roche (USNA) SI413 - Class 1 Fall 2011 4 / 10



A multitude of PLs

Check out Wikipedia’s list of PLs or the 99 Bottles of Beer site.

There are a lot of PLs out there.

Why so many? What features distinguish them?

How can we talk about programming languages?

Roche (USNA) SI413 - Class 1 Fall 2011 5 / 10

http://en.wikipedia.org/wiki/List_of_programming_languages
http://www.99-bottles-of-beer.net/


Vocabulary for Programming Languages

Excerpt from the R6RS standard

Scheme is a statically scoped and properly tail-recursive dialect of the Lisp
programming language invented by Guy Lewis Steele Jr. and Gerald Jay
Sussman. It was designed to have an exceptionally clear and simple
semantics and few different ways to form expressions. A wide variety of
programming paradigms, including functional, imperative, and message
passing styles, find convenient expression in Scheme.

Reading this should give you a good overview of what Scheme is about.
But first we have to learn what the terms mean!

Roche (USNA) SI413 - Class 1 Fall 2011 6 / 10



Programming Language Paradigms

Most popular PLs fall into at least one of four classes:

Imperative/procedural
C, Fortran, Cobol

Object-oriented
C++, Java, Smalltalk

Scripting
Perl, PHP, Javascript

Functional
Lisp, Scheme, ML, Haskell

Roche (USNA) SI413 - Class 1 Fall 2011 7 / 10



Imperative Programming Languages

Consider the following code fragment from C++:

int x = 0;

x = 3;

x = x + 1;

Each statement is a command.

Code specifies actions and a specific ordering.

Expressions may produce values (these do),
but side effects are often more important.

Roche (USNA) SI413 - Class 1 Fall 2011 8 / 10



Imperative Programming Languages

Consider the following code fragment from C++:

int x = 0;

x = 3;

x = x + 1;

Each statement is a command.

Code specifies actions and a specific ordering.

Expressions may produce values (these do),
but side effects are often more important.

Roche (USNA) SI413 - Class 1 Fall 2011 8 / 10



Functional Programming

Functional programming is declarative: the output is a mathematical
function of the input.
Emphasizes describing what is computed rather than how.

Key features:

Referential transparency
The value of an expression does not depend on its context.

Functions are first-class
Functions can be passed as arguments, created on-the-fly, and
returned from other functions. Functions are data!

Types are first-class
This is not true in Scheme (there are no types), but is in other
functional PLs.

Roche (USNA) SI413 - Class 1 Fall 2011 9 / 10



Functional Programming

Functional programming is declarative: the output is a mathematical
function of the input.
Emphasizes describing what is computed rather than how.

Key features:

Referential transparency
The value of an expression does not depend on its context.

Functions are first-class
Functions can be passed as arguments, created on-the-fly, and
returned from other functions. Functions are data!

Types are first-class
This is not true in Scheme (there are no types), but is in other
functional PLs.

Roche (USNA) SI413 - Class 1 Fall 2011 9 / 10



Other common properties of functional PLs

Garbage collection

Built-in list types and operators

Interpreters rather than compilers

Extensive polymporphism
(again, not applicable to Scheme)

Roche (USNA) SI413 - Class 1 Fall 2011 10 / 10


