
CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1

(These lecture notes were prepared and presented by Dan Roche.)

11 Multivariate Polynomials

References: MCA: Section 16.6 and Chapter 21
Algorithms for Computer Algebra (Geddes, Czapor, Labahn):

Section 3.4 and Chapter 10
Ideals, Varieties, and Algorithms (Cox, Little, O’Shea): Chapters 1 & 2

Solving a linear system is the same as finding a solution to a system of degree-1 multivariate
polynomial equations. That is, given an n×n matrix A and a n× 1 vector b, solving Ax = b for x
is the same as finding a set of values for the variables x1, x2, . . . , xn that satisfy the set of equations

{Ai1x1 + Ai2x2 + · · ·+ Ainxn = bi}1≤i≤n .

But what if we want to solve a system of non-linear multivariate polynomial equations? Such
systems arise frequenty in various engineering and physical science applications. We start with
some basic terminology for multivariate polynomials:

Definition 11.1. Let F be a field and n ∈ N.

• Every exponent vector e = (e1, e2, . . . , en) ∈ Nn defines a monomial in F[x1, x2, . . . , xn]:
xe = xe1

1 · x
e2
2 · · ·xen

n .

• A term in F[x1, x2, . . . , xn] is the product of a nonzero coefficient c ∈ F\{0} and a monomial,
i.e. c · xe.

• A polynomial f ∈ F[x1, x2, . . . , xn] is a finite sum of terms. We write #f for the number of
terms in f .

• The max degree of a monomial is the largest exponent: maxdeg xe := ‖e‖∞ = max1≤i≤n ei.
The max degree of a polynomial is the largest max degree of a term that appears in the
polynomial.

11.1 Representations

The choice of what data structure we use to represent objects is always of crucial importance in
computer science. In mathematical computing, there is a tendency to ignore this and focus only on
the mathematical structures at hand. Our computer algebra system (e.g. Maple) will usually make
a default choice for us, but it isn’t always the best. Let’s examine a few options for representing
multivatiate polynomials.

11.1.1 Completely Dense Representation

This is the extension of the usual dense univariate polynomial representation that we have covered
extensively:

Definition 11.2. The completely dense representation of a multivariate polynomial f ∈ F[x1, x2, . . . , xn]
with degxi

f < di for i = 1, . . . , n is a d1× d2× · · · × dn array with entries in F, such that the entry
at index i = (i1, i2, . . . , in) is the coefficient of xi in f .

1

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 2

When comparing polynomial representations, we will assume that each coefficient is stored in
a single machine word. This is useful even when coefficients take up more space, since we might
reasonably suppose then that each coefficient is represented by a pointer to the actual storage, and
the size of the coefficient storage will be the same no matter what the polynomial representation
scheme is. Under this model, the size of the completely dense representation is d1d2 · · · dn; if m ∈ N
such that m > maxdeg f , this is at most mn.

The completely dense representation allows constant-time access to any coefficient, and all
“fast” methods for dense univariate arithmetic are easily applied.

Note that if the array is stored contiguously in row-major order, the representation of f(x1, x2, . . . , xn)
is the same as that for the dense univariate polynomial over F[y] given by

f
(
yd2d3···dn , yd3d4···dn , . . . , ydn , y

)
.

If we set the dimensions high enough to make room for the result, converting from multivariate
to univariate in this fashion is the most obvious way of using fast univariate arithmetic methods
for multivariate computation (known as “Kronecker substitution”).

11.1.2 Recursive Dense Representation

This is similar to the completely dense representation, except that zero polynomials are “trimmed”
from the storage.

Definition 11.3. A polynomial f ∈ F[x1, x2, . . . , xn] is stored in the recursive dense representation
as either:

• f , if n = 0 (since this means f ∈ F),

• A null pointer, if f = 0, or

• A dense array (f0, f1, f2, . . .), where f = f0+f1xn+f2x
2

n +· · · and each fi ∈ F[x1, x2, . . . , xn−1]
is also stored in the recursive dense representation.

Consider the size of the recursive dense representation. Assuming, as before, that each coefficient
in F can be stored with a single machine word, and letting degxi

f < di for each i, the following is
an upper bound of the recursive dense representation, easily proven by induction:

((((d1 + 1) d2 + 1) · · ·) dn−1 + 1) dn =
n∑

i=1

n∏
j=i

dj

Under the reasonable assumption that each variable xi occurs in at least one term of f , each
di ≥ 2. This means the above expression is always less than 2d1d2 · · · dn, and hence is never twice
as large as the size of the completely dense representation.

A polynomial with a single term will have size d1 +d2 + · · ·+dn in the recursive dense represen-
tation. If t = #f is the total number of terms in f , the total size is at most (d1 + d2 + · · ·+ dn)t.

The following theorem summarizes these two bounds.

Theorem 11.4. Let f ∈ F[x1, x2, . . . , xn] and m, t ∈ N such that m > maxdeg f and t = #f .
Then the size of the recursive dense representation of f is bounded above by min(2mn, mnt).

2

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 3

So the recursive dense representation can be exponentially smaller than the completely dense
one. Unfortunately, the recursive dense size is dependent on the order of the indeterminates, as
illustrated in the following example.

Example. Let m ∈ N be arbitrary and

f = ym−1 + xym−1 + x2ym−1 + · · ·+ xm−1ym−1.

(Notice that m > maxdeg f .)
If we treat f as over the ring F[x, y], then the recursive dense representation corresponds to the

m-tuple (0, 0, · · · , 0, 1 + x + x2 + · · ·+ xm−1). The total size in this case is 2m.
On the other hand, if we reverse the variable order so that f ∈ F[y, x], the representation

corresponds to (ym−1, ym−1, . . . , ym−1), with total size m2. ♦

In fact, the preceding example is as bad as it can get, in terms of variance in size between
different variable orderings.

Theorem 11.5. Let f ∈ F[x1, x2, . . . , xn] with max degree maxdeg f < m. If a, b ∈ N are the sizes
of the recursive dense representations of f under two different orderings of the n variables, then
a ≤ mb.

Unfortunately, with the smaller size comes a higher cost of computation. Coefficient access
costs O(n) in the recursive dense representation. Polynomial arithmetic again reduces (this time
recursively) to the univariate case, but operation speed can be slightly greater due to branching
(checking whether polynomials are zero).

11.1.3 Sparse Representation

This corresponds to the default representation of polynomials in most computer algebra systems
such as Maple.

Definition 11.6. Let f ∈ F[x1, x2, . . . , xn] Write f = c1xe1 + c2xe2 + · · · + ctxe3 , with each
ci ∈ F \ {0} and all the ei’s distinct elements of Nn.

Then the sparse representation of f is list of t coefficient-exponent tuples, specifically
((c1, e1), (c2, e2), . . . , (ct, et)).

Notice that the exponents in this case could be very large, and so we should account for their
length in this representation. Writing t = #f and maxdeg f < m, the size of the sparse represen-
tation is thus O(nt log m). Again, this could be exponentially smaller than the size of the recursive
dense representation.

As usual, we pay for the decreased representation size with increased operation costs. Typically,
operations on sparse polynomials are counted in terms of the number of monomial comparisons
required. (The cost of each comparison depends on the specific monomial order chosen, but is
usually O(n log m).) Näıvely, coefficient access then costs O(t) and addition of two polynomials
with s and t terms costs O(st) monomial comparisons.

If the terms are stored in some sorted order, however, arithmetic becomes more efficient. Using
binary search, coefficient access costs O(log t), and addition is equivalent to merging two sorted
lists, at cost O(s + t) monomial comparisons.

Multiplication of sparse polynomials with s and t terms can be performed by adding (merging)
t intermediate products of s terms each. If we always merge polynomials with the same number of
terms, this can be performed with O(st log t) monomial comparisons.

3

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 4

11.2 Monomial Orderings

The question remains as to how exactly we should order the monomials. The following conditions
are sufficient for the correctness of the algorithms we present here, and also correspond to intuition.

Definition 11.7. A relation ≺ on exponent tuples in Nn is an admissible monomial order iff it
satisfies the following conditions:

• For any a, b ∈ Nn with a 6= b, either a ≺ b or b ≺ a. This means that ≺ is a total order.

• (0, . . . , 0) � e for any e ∈ Nn. (Note that (0, . . . , 0) corresponds to the monomial 1). This
means that ≺ is a well order.

• For any a, b, c ∈ Nn with a ≺ b, (a + c) ≺ (b + c) also.

The most common admissible monomial order corresponds to the standard alphabetic ordering
used in dictionaries.

Definition 11.8. The pure lexicographic order ≺lex is given by: (a1, a2, . . . , an) ≺lex (b1, b2, . . . , bn)
iff there exists j ∈ {1, 2, . . . , n} such that aj < bj and for each i ∈ {1, 2, . . . , j − 1}, ai = bi.

We also use the ≺ symbol to apply the order to monomials and terms (not just exponent tuples).
So, for instance, over F[x, y, z], x2y3z4 ≺lex x4z2 and 1000xy2z3 ≺lex 3xy2z8.

There are many other monomial orderings used for various reasons, but for simplicity we will
just concentrate on ≺lex, and use ≺ to denote this ordering from now on.

This leads to some more new terminology for multivariate polynomials.

Definition 11.9. Let f ∈ F[x1, x2, . . . , xn] and write f =
∑t

i=1 cixei , with t = #f and each
ci ∈ F \ {0}.

• The multidegree of f , written mdeg f , is the largest exponent tuple under ≺, that is, the
unique ej such that ei ≺ ej for all i 6= j.

• If mdeg f = ej for j ∈ {1, . . . , t}, then the leading term of f , denoted lt(f), is cixej . The
leading coefficient of f , denoted lc(f), is ci, and the leading monomial of f , denoted lm(f),
is xej .

Example. Let f ∈ F[x, y, z] with f = 2xy2z + 3y − 5xy3. Then f would be stored in the sorted
sparse representation as (−5xy3, 2xy2z, 3y). This shows that mdeg(f) = (1, 3, 0), lt(f) = −5xy3,
lc(f) = −5, and lm(f) = xy3. ♦

11.3 Reduction and Normal Forms

Consider a single step in the ordinary long division of two univariate polynomials, say f divided
by g. We examine the leading terms of f and g. If deg f < deg g then we are done, so assume
deg f ≥ deg g; this means that lm(g) divides lm(f) (since they are both just powers of the single
indeterminate). So we write lt(f)/ lt(g) as the first term of the quotient, and proceed to compute
h = f − (lt(f)/ lt(g))g and then divide h by g.

To generalize this process to multivariate polynomials, we first notice that for f, g ∈ F[x1, x2, . . . , xn],
lm(g) does not necessarily divide lm(f), even when mdeg g ≺ mdeg f . If, however, this condition
does hold, then we can perform a single step of long division as above; this is called a reduction.

4

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 5

Definition 11.10. For f, g, h ∈ F[x1, x2, . . . , xn], we say f reduces to h with respect to g and write
f −→

g
h iff lm(g)| lm(f) and

h = f − lt(f)
lt(g)

g.

Example. Let g = 3x2yz3 + 5xyz5. Then

15x3y3z3 − 2x3z −→
g
−2x3z − 25x2y3z5

♦

Having a whole family of polynomials, rather than a single g, can allow us to do more reductions.

Definition 11.11. Let A ⊆ F[x1, x2, . . . , xn] be a family of polynomials, and f, h ∈ F[x1, x2, . . . , xn].

• f −→
A

h iff ∃g ∈ A such that f −→
g

h.

• f
∗−→
A

h iff ∃h1, h2, . . . ∈ A s.t. f −→
A

h1 −→
A

h2 −→
A
· · · −→

A
h.

Example. Let A = {g1, g2, g3} ⊆ F[x, y, z] with

g1 = x2y − 2yz + 1
g2 = xy2 + 2x− z2

g3 = y2z − y2 + 5

Now write f = 3x2y2 + 7y − 1. We have

f −→
g1

6y2z + 4y − 1 −→
g3

6y2 + 4y − 31 := h1

f −→
g2

−6x2 + 3xz2 + 7y − 1 := h2

♦

Note that both h1 and h2 cannot be reduced any further with respect to A. Of course we have
a name for this condition:

Definition 11.12. Let A ⊆ F[x1, x2, . . . , xn]. Then the set of normal forms with respect to A,
denoted NFA, is the set of polynomials which cannot be reduced by any polynomial in A. That
is,

NFA = {f ∈ F[x1, x2, . . . , xn] : @h ∈ F[x1, x2, . . . , xn] s.t. f −→
A

h}.

Since each reduction decreases the multidegree of the polynomial with respect to ≺, it should
be clear that for any f ∈ F[x1, x2, . . . , xn] and a finite subset A ⊆ F[x1, x2, . . . , xn], we can always
find an h ∈ F[x1, x2, . . . , xn] such that f

∗−→
A

h and h ∈ NFA, just by repeatedly reducing f by

elements of A until we can’t anymore.
If we further specify some algorithmic way of choosing the order of reductions (say by ordering

the polynomials in A), then the h we find will always be the same. Without giving a formal
definition, let’s assume some such algorithm is understood, and write NFA(f) = h in this case.

5

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 6

11.4 Ideals and Bases

Recall the notion of an ideal from algebra:

Definition 11.13. Let R with operations (+, ·) be a ring. An ideal I of R is a subset of R satisfying:

• a + b ∈ I, for all a, b ∈ I

• a · r ∈ I, for all a ∈ I and r ∈ R

Note that having some elements of R in an ideal requires that many other elements must be in
the ideal also. Hence we have the following:

Definition 11.14. A subset S = {s1, s2, . . .} of a ring R is a generator for an ideal, which we
denote as 〈S〉 or 〈s1, s2, . . .〉:

〈S〉 := {r1s1 + r2s2 + · · · : r1, r2, . . . ∈ R}.

The set S is called a basis for the ideal 〈S〉.

Note that 〈S〉 is the smallest ideal in R which contains S. Also, a single ideal can have many
different bases.

For example, over Z, you can convince yourself that 〈4, 6〉 is just the set of even integers, and
so is the same as 〈2〉. In fact, from the extended Euclidean algorithm, we can see that any ideal in
Z is generated by a single integer, which is just the gcd of all the integers in the ideal.

Here, we’re interested in the ring F[x1, x2, . . . , xn], where things are not so simple, and most
ideals don’t have a single-element basis. But it’s not too bad:

Theorem 11.15 (Hilbert, 1888). Every ideal I of F[x1, x2, . . . , xn] has a finite basis.

This is known as “Hilbert’s basis theorem” and is crucial for the correctness of our methods
here (but says nothing about the complexity because there’s no concrete limit on the size of the
basis).

Now let’s try an extend the idea of modular equivalence to multivariate polynomials. Over
Z, a ≡ b mod m iff m|(a − b). This is the same as saying that (a − b) ∈ 〈m〉. So for f, h ∈
F[x1, x2, . . . , xn] and A ⊆ F[x1, x2, . . . , xn], we say that f ≡ h mod 〈A〉 iff (f − h) ∈ 〈A〉.

From this definition, it follows immediately that f −→
A

h implies f ≡ h mod A, and in particular

f ≡ NFA(f).

11.5 Gröbner Bases

Consider the ideal membership problem: given polynomials f, g1, g2, . . . , gk ∈ F[x1, x2, . . . , xn], can
f be written as a sum of multiples of gi’s, i.e. is f ∈ 〈g1, g2, . . . , gk〉? Setting A = {g1, . . . , gk}, we
know this is the case iff f ≡ 0 mod 〈A〉. And clearly 0 ∈ NFA. But there may be many elements
of NFA which are equivalent to f , and there is no guarantee that our deterministic strategy for
choosing NFA(f) will produce 0, or even that f

∗−→
A

0.

Gröbner bases provide such a guarantee.

Definition 11.16. A set G ⊆ F[x1, x2, . . . , xn] is a Gröbner Basis for an ideal I if and only if

∀f, h ∈ NFG, f ≡ h mod I ⇒ f = h.

6

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 7

This implies immediately that for any f ∈ F[x1, x2, . . . , xn], there is only one choice forNFG(f),
regardless of the order of reductions. And it also proves that G is actually a basis for I: for any
h ∈ I, since h ≡ 0 mod I and 0 ∈ NFG, h

∗−→
G

0, which means that h ∈ 〈G〉.
Since the choice of NFG(f) is unique, we now have a canonical normal form for polynomials

modulo I. So having a finite Gröbner Basis for an ideal I gives us a way to determine whether
f ≡ g mod I for any f, g ∈ F[x1, x2, . . . , xn], and in particular solves the ideal membership problem.

But how can we compute a finite Gröbner basis for an ideal I = 〈f1, f2, . . . , fk〉? We’ll breifly
outline the approach taken by Bruno Buchberger, who actually coined the term “Gröbner Basis”
in his 1965 Ph.D. thesis. We start with the following definition:

Definition 11.17. Let f, g ∈ F[x1, x2, . . . , xn]\{0} and u = lcm(lt(f), lt(g)). Then the s-polynomial
of f and g is

s-poly(f, g) =
u

lt(f)
f − u

lt(g)
g.

Intuitively, s-poly(f, g) is the smallest polynomial in 〈f, g〉 with the leading terms of f and g
stripped out. s-polynomials also give a straightworward test for Gröbner bases:

Theorem 11.18 (MCA, Theorem 21.31). G ⊆ F[x1, x2, . . . , xn] is a Gröbner basis for the ideal
〈G〉 iff NFG(s-poly(g1, g2)) = 0 for all g1, g2 ∈ G.

See the book for a proof. Given a finite set G ⊆ F[x1, x2, . . . , xn], Buchberger’s algorithm to
compute a Gröbner basis for the ideal 〈G〉 is based around this theorem. Choose the first pair
gi, gj ∈ G in the basis such that NFG(s-poly(gi, gj)) 6= 0. If no such pair exists, then G is a
Gröbner basis and we are done. Otherwise, add NFG(s-poly(gi, gj)) to G and repeat. (This is
presented more formally as Algorithm 21.33 in MCA.)

Example. Let’s use Buchberger’s algorithm to find a Gröbner basis for {g1, g2} with

g1 = 3x2y + 5y − z,

g2 = yz.

Initially there is just one pair of polynomials in the basis. So compute

NFG(s-poly(g1, g2)) = NFG(5yz − z2) = −z2

So set g3 = z2 (dividing out the content) and update G = G
⋃

g3. Then we just need to confirm
that

NFG(s-poly(g1, g3)) = NFG(5yz2 − z3) = 0,

NFG(s-poly(g2, g3)) = NFG(0) = 0.

So {g1, g2, g3} is a Gröbner basis for the original set G. ♦

Theorem 11.19. Buchberger’s algorithm terminates.

Proof. Let Mi be the ideal generated by the leading monomials of G after the i’th iteration. Since
each new polynomial added to G is in normal form, each Mi (Mi+1. Hence we have an ascending
chain of ideals. By Hilbert’s basis theorem, the ideal

⋃
i≥0 Mi has a finite basis, say G′. We must

have G′ ⊆ Mi for some i ≥ 0. But then Mi = Mi+1, a contradiction unless there are only i
iterations.

7

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 8

Unfortunately, Gröbner bases can be very large, especially under the lexicographical ordering.
We can reduce the size of G somewhat by removing any basis element that is not in NFG, and
further reduction is possible by so-called “interior reductions” that do not always involve the leading
monomials.

We’ve already seen how a Gröbner basis allows us to test ideal membership and equivalence
modulo an ideal. Another very useful application is solving a multivariate polynomial system.

Consider the system S = (fi = vi)i=1,2,...,k with each fi ∈ F[x1, x2, . . . , xn] and vi ∈ F. This is
of course equivalent to the system (fi − vi = 0)i=1,2,...,k, so without loss of generality assume each
vi = 0.

Let G be a Gröbner basis for the ideal generated by {fi : i = 1, . . . , k}, under the pure lexico-
graphical ordering ≺lex. I claim (without proof) that if the system is zero-dimensional (i.e. it has
finitely many solutions), then G contains a polynomial which only contains xn, one containing only
xn−1 and xn, and so forth. There is a name for such a set:

Definition 11.20. A set T = {t1, t2, . . . , tn} ⊆ F[x1, x2, . . . , xn] is a triangular set iff ti ∈ F[xi, xi+1, . . . , xn]
for i = 1, 2, . . . , n.

With this triangular set, we can solve the univariate polynomial tn for xn, then use back-
substitution into tn−1 to solve for xn−1, and so forth. So Gröbner bases can be used to solve
zero-dimensional systems of multivariate polynomials.

It is worth noting that Buchberger’s algorithm has been more or less superceded by more efficient
approaches, especially the F4 and F5 algorithms by Jean-Charles Faugère. There are alternative
methods to compute triangular sets for a given polynomial system as well.

8

