CS 136 Spring 2007

Tutorial 7: Midterm Review
Sample Solutions

11. Efficiency Analysis

Informal efficiency analysis

The following table gives the asymptotic run-times for the two methods in
the two implementations:
‘ ss-list) ‘ ss-vect’
O(n) O(logn)
O(1) O(n)

member?
insert!

safe-insert

The asymptotic run-time of safe-insert! is O(n) in both implementations
since

O(n) + O(logn) = O(1) + O(n) = O(n).

Formal analysis

In order to analyze contains-duplicate?, we first need to look at the helper
function contains?. So define C'(n) to be the maximal number of steps to
evaluate (contains? 1st num) when 1lst has n elements.

Then we can see that

_ (1, n=20
C’(n)—{ o+ C(n—1), n>1

where ¢; and ¢y are some positive constants.

Solving this recurrence (not shown — see Lecture Module 5, Page 6) gives
us the explicit formula C'(n) = ¢; + con.

Now we can write a recurrence for T'(n), the maximum number of steps
to evaluate contains-duplicate? on input of length n, in terms of T'(m)
for m < n and C(m):

s, n=>0
T(n)—{ ca+Cn—-1)+Tn—-1), n>1
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where again cs, ¢4 are positive constants.
Substituting the explicit formula for C'(n) and creating the new constant
cs = ¢4 + ¢1 — co gives the simplification:

_ C3, n=>0
T(n)—{ cs+cn+T(n—1), n>1

II1. Proofs

Solving a recurrence
Let’s examine some values of T'(n) to try to guess a recurrence:
0) = ¢
( ) = Cj + Co + C3
T(2) = 205 + (1 -+ 2)02 + c3
(3) = 3¢5+ (14+2+3)ca+c3
(4) = des+(14+2+3+4)c2 +c3

From this, we guess that T'(n) = nc; + (1 +2+--- +n)ca + ¢3. And we
know from some basic math course that 1+2+---4+n=n(n+1)/2. So we
have (still a guess) that

n(n+1)

T(n) = csn+ ¢ i

+ c3.
Now we want to prove this by induction:
Proof. Claim: T'(n) = csn + con(n+1)/2 4¢3 for all n > 0
Base case: n =0 From the recurrence, we know that 7°(0) = ¢3. And
c5-0+c-0-(0+1)/2+¢3=0,
so the claim holds for the base case when n = 0.

Induction Hypothesis Assume that T'(k) = czk + cok(k + 1)/2 + ¢5 for
some k > 0.



Inductive Step Since k£ > 0, k 4+ 1 > 1, so we know from the recurrence
that T(k + 1) = ¢5 + ca(k + 1) + T'(k). Then, using the induction
hypothesis, we have:

E(k+1
Tk+1) = c5+c2(k+1)+c5k+c2(2)+c3

k
= ck+1)+c(k+1) <1+2>—|—03

(k+ 1)(k + 2) np
2
So the claim holds for n = k + 1 whenever the claim holds for n = k.

= C5(k+1) + co

Conclusion Therefore, by the principle of mathematical induction, the claim
holds for all n > 0, and we are done.

[]

Proving f(n) is O(g(n))

We want to prove that T'(n) is O(n?), using the explicit formula we just
computed. First, let’s simplify our formula for 7'(n):

n(n+1
T(n) = csn+ 02(2) +c3
Co o 205 + C2
= —=n n+c
5 + 5 + c3
So if we create two more contants
Co 265 + ¢
C _ — C g
6 2 y 7 2 )

then we have T'(n) = cgn® + ¢yn + c3. Now proving T'(n) is O(n?) should be
straightforward.

When we are proving something is order of something else, we need to
choose the constants ¢ and ng to use in the definition. I'll choose ¢ = ¢5 +
¢7 + c3 and ng = 1. Many other choices for these constants would also work.

For the proof, we need to show that T'(n) < cn? for all n > ny. Since
n > 1, we know that n < n? and 1 < n?, so we can write

T(n) = cgn® +crn + c3 < cgn’ + cr¢® + eyn® = (¢ + c7 + c3)n” = en”

whenever n > ng = 1. Therefore, by the definition of order notation, T'(n) is

O(n?).



Proving f(n) is not O(g(n))

We want to prove that T'(n) is not O(n(logn)?). To do this, we will want to
use that fact that
1 <logn < (logn)* <n

whenever n > 16.

In general, to prove something is not order of something else, we will use
a proof by contradiction. So we will not get to choose the constants ¢ and
ng, but we will choose a special value of n to show a contradiction.

For this proof, assume by way of contradiction that T'(n) is O(n(logn)?).
Then, by the definition of order notation, there exist positive constants ¢ and
no such that T'(n) < cn(logn)? whenever n > ngy. To show a contradiction,
let k = max {c(c+ 1)%,ng, 17}, and let n = k°*1.

Then k > 16, so k > (logk)?. And since k > c(c + 1)? and ¢ > 1,
k¢ > c(c+ 1)%. Using these facts, we have:

T(n) = cen®+cm+cy

n2

= nkk

ne(e +1)*(log k)?
= cn((c+1)logk)’
= cn(log keth)?

(
= cn(logn)?

\%

V

So T'(n) > cn(logn)?. And since k > ng, n > ng, so this is a contradic-
tion. Therefore our original assumption must be false; namely T'(n) is not
O(n(logn)?).



