
CS 136 Spring 2007
Tutorial 7: Midterm Review

Sample Solutions

II. Efficiency Analysis

Informal efficiency analysis

The following table gives the asymptotic run-times for the two methods in
the two implementations:

ss-list% ss-vect%

member? O(n) O(log n)
insert! O(1) O(n)

safe-insert

The asymptotic run-time of safe-insert! is O(n) in both implementations
since

O(n) + O(log n) = O(1) + O(n) = O(n).

Formal analysis

In order to analyze contains-duplicate?, we first need to look at the helper
function contains?. So define C(n) to be the maximal number of steps to
evaluate (contains? lst num) when lst has n elements.

Then we can see that

C(n) =

{

c1, n = 0
c2 + C(n − 1), n ≥ 1

where c1 and c2 are some positive constants.
Solving this recurrence (not shown — see Lecture Module 5, Page 6) gives

us the explicit formula C(n) = c1 + c2n.
Now we can write a recurrence for T (n), the maximum number of steps

to evaluate contains-duplicate? on input of length n, in terms of T (m)
for m < n and C(m):

T (n) =

{

c3, n = 0
c4 + C(n − 1) + T (n − 1), n ≥ 1

1



where again c3, c4 are positive constants.
Substituting the explicit formula for C(n) and creating the new constant

c5 = c4 + c1 − c2 gives the simplification:

T (n) =

{

c3, n = 0
c5 + c2n + T (n − 1), n ≥ 1

III. Proofs

Solving a recurrence

Let’s examine some values of T (n) to try to guess a recurrence:

T (0) = c3

T (1) = c5 + c2 + c3

T (2) = 2c5 + (1 + 2)c2 + c3

T (3) = 3c5 + (1 + 2 + 3)c2 + c3

T (4) = 4c5 + (1 + 2 + 3 + 4)c2 + c3

From this, we guess that T (n) = nc5 + (1 + 2 + · · · + n)c2 + c3. And we
know from some basic math course that 1 + 2 + · · ·+ n = n(n + 1)/2. So we
have (still a guess) that

T (n) = c5n + c2

n(n + 1)

2
+ c3.

Now we want to prove this by induction:

Proof. Claim: T (n) = c5n + c2n(n + 1)/2 + c3 for all n ≥ 0

Base case: n = 0 From the recurrence, we know that T (0) = c3. And

c5 · 0 + c2 · 0 · (0 + 1)/2 + c3 = 0,

so the claim holds for the base case when n = 0.

Induction Hypothesis Assume that T (k) = c5k + c2k(k + 1)/2 + c3 for
some k ≥ 0.

2



Inductive Step Since k ≥ 0, k + 1 ≥ 1, so we know from the recurrence
that T (k + 1) = c5 + c2(k + 1) + T (k). Then, using the induction
hypothesis, we have:

T (k + 1) = c5 + c2(k + 1) + c5k + c2

k(k + 1)

2
+ c3

= c5(k + 1) + c2(k + 1)

(

1 +
k

2

)

+ c3

= c5(k + 1) + c2

(k + 1)(k + 2)

2
+ c3

So the claim holds for n = k + 1 whenever the claim holds for n = k.

Conclusion Therefore, by the principle of mathematical induction, the claim
holds for all n ≥ 0, and we are done.

Proving f(n) is O(g(n))

We want to prove that T (n) is O(n2), using the explicit formula we just
computed. First, let’s simplify our formula for T (n):

T (n) = c5n + c2

n(n + 1)

2
+ c3

=
c2

2
n2 +

2c5 + c2

2
n + c3

So if we create two more contants

c6 =
c2

2
, c7 =

2c5 + c2

2
,

then we have T (n) = c6n
2 + c7n + c3. Now proving T (n) is O(n2) should be

straightforward.
When we are proving something is order of something else, we need to

choose the constants c and n0 to use in the definition. I’ll choose c = c6 +
c7 + c3 and n0 = 1. Many other choices for these constants would also work.

For the proof, we need to show that T (n) ≤ cn2 for all n ≥ n0. Since
n ≥ 1, we know that n ≤ n2 and 1 ≤ n2, so we can write

T (n) = c6n
2 + c7n + c3 ≤ c6n

2 + c7c
2 + c3n

2 = (c6 + c7 + c3)n
2 = cn2

whenever n ≥ n0 = 1. Therefore, by the definition of order notation, T (n) is
O(n2).

3



Proving f(n) is not O(g(n))

We want to prove that T (n) is not O(n(log n)2). To do this, we will want to
use that fact that

1 < log n < (log n)2 < n

whenever n > 16.
In general, to prove something is not order of something else, we will use

a proof by contradiction. So we will not get to choose the constants c and
n0, but we will choose a special value of n to show a contradiction.

For this proof, assume by way of contradiction that T (n) is O(n(log n)2).
Then, by the definition of order notation, there exist positive constants c and
n0 such that T (n) ≤ cn(log n)2 whenever n ≥ n0. To show a contradiction,
let k = max {c(c + 1)2, n0, 17}, and let n = kc+1.

Then k > 16, so k > (log k)2. And since k ≥ c(c + 1)2 and c ≥ 1,
kc ≥ c(c + 1)2. Using these facts, we have:

T (n) = c6n
2 + c7n + c3

> n2

= nkck

> nc(c + 1)2(log k)2

= cn ((c + 1) log k)2

= cn(log kc+1)2

= cn(log n)2

So T (n) > cn(log n)2. And since k ≥ n0, n ≥ n0, so this is a contradic-
tion. Therefore our original assumption must be false; namely T (n) is not

O(n(log n)2).

4


