
Tutorial 4: Scintacks and Some Antics (Syntax
and Semantics)

CS 135 Fall 2007

October 3-5, 2007

This week we will be looking at the mathematical structure and mean-
ing of a Scheme program. The material here comes primarily from Lecture
Module 4 in the class notes. It’s quite fortunate (and unusual) that we are
working in a programming language in which we can rigorously define the
meaning of every program with relatively few rules. The only unfortuanate
side effect is that we’ll have to endure a week without the fun stories and
problem descriptions that we’ve all grown accustomed to in these tutorials.

Give a full syntactic/semantic analysis of each of the following Scheme
programs. That is, go through (one by one) each of the substitution steps to
completely evaluate each expression to a value. If an error occurs, making
evaluation impossible, pinpoint the exact location and nature of the error
(syntax, semantics, or other).

1. (and (symbol? ’hello)

(= (- 5 1) (* 2 3))

(/ "a string" "another string"))

2. (define a (+ 2 3))

(define (foo2 x)

(cond [(or (> x 1)

(< x -1))

(sqr x)]

[(zero? x) 1]))

(foo2 a)

(foo2 (/ a a))

1



3. (define (foo3 5)

(+ 1 5))

(/ (foo3 5)

0)

4. (define-struct name (first middle last))

(define (foo4 nme)

(name-middle (+ nme 1)))

(name-last (make-name "James" "A" "Garfield"))

5. (define (foo5 x)

(cond [(= 1 x) 2]

[else

(* 2

(foo5 (sub1 x)))]))

(foo5 3)

(foo5 -2)

2


