Tutorial 2: Creating Functions using the
Design Recipe

CS 135 Fall 2007
September 19-21, 2007

This week’s tutorial covers how to design, develop, and test Scheme func-
tions. The method we will use is the ”Design Recipe”, which can be found
in module 2 of the lecture notes.

1 Calorie Counter

I'm trying to lose weight, but I'm too lazy to use a calculator to figure out
how many calories I've burned. My favorite fitness website tells me that I
burn 70 calories for every 10 minutes of walking, and 174 calories for every
10 minutes of running.

Use the Design Recipe to create a Scheme function calorie-count which
consumes the number of minutes I've spent walking, the number of minutes
I've spent running, and the number of calories in the food I've eaten today,
and produces a single positive or negative value for the number of calories
I've burned today (output-intake).

2 Room Area

You are checking out a possible apartment for next year, but unfortunately
the dimensions of the rectangular room are given in feet and inches, and the
area of your rug is in square centimeters.

Given that one inch is exactly 2.54 centimeters, write a Scheme function
room-dims-cm that comsumes four numbers for the lengths of two sides of



the room in feet and inches and produces the area of the room in centimeters
squared. Use the Design Recipe to create your procedure.

3 Tasty Beverages at a Party

You occasionally host parties for your friends at school. You always provide
tasty beverages for your guests, and you always count how many guests you
have. But you'd like to know how many of your friends from CS 135 came.
You notice that each of your CS 135 classmates consumes two beverages at
the party, while everyone else just has one.

So, given the number of tasty beverages you start out with, the number
you have left when the party is over, and the total number of people who
attended, write a Scheme function schemers-at-party to compute the num-
ber of CS 135 students who came to your party. Use the Design Recipe and
think carefully about the problem before you start to write any code.

4 Unix Time

On many modern computers, the internal clock of the computer is stored as
a single number representing the number of seconds elapsed since the ” Unix
epoch”: Midnight, January 1, 1970. For instance, the first tutorial for this
week will be held on September 19 at 11:30am; the Unix time for this is
1190201400.For the following, it will be helpful to know that January 1, 1970
was a Thursday, the 5th day of the week.

4.1 Unix time to Day of Week

Use the Design Recipe to create a function which consumes a time in Unix
time and produces an integer from 1 to 7 for the day of the week that time
fell on (1 for Sunday, 2 for Monday, 3 for Tuesday, etc.).

Call your function unixtime->dayofweek. You may find the built-in
Scheme functions quotient and remainder useful. And you may want to
consider using helper functions and/or constants.



4.2 Changing specifications and using a pre-built func-
tion

Oh no! After you've already written your program, the requirements have
been changed! This often happens in industry and has even been known to
happen with CS assignments from time to time.

It turns out no one likes seeing numbers referring to the days of the
week. You have been given a function (below) which consumes an integer
and returns a string for the corresponding day of the week. You know must
use this function so that your unixtime->dayofweek returns a string for the
day of the week rather than an integer.

You don’t have to understand everything in the function definition below.
Notice that, because the design recipe has been followed, you can test and
use this function without totally understanding how it works.

Also note that you don’t need to start from scratch to fix your unixtime->dayofweek

function. Just follow each step of the design recipe again, updating each part
as necessary.

;5 daynumber->dayname: num —-> string
;; Purpose: To convert from a number in the range (1,2,...,7)
- to the name of the corresponding weekday.
;; Examples: (daynumber->dayname 6) => "Friday"
(define (daynumber->dayname day)
(cond [(= day 1) "Sunday"]

[(= day 2) "Monday"]

[(= day 3) "Tuesday"]

[(= day 4) "Wednesday"]

[(= day 5) "Thursday"]

[(= day 6) "Friday"]

[(= day 7) "Saturday"l))
; ;Tests:
(daynumber->dayname 6) ;should be "Friday"
(daynumber->dayname 4) ;should be "Wednesday"
(daynumber->dayname 1) ;should be "Sunday"



