Module 4: Dictionaries and Balanced Search Trees

CS 240 - Data Structures and Data Management

Reza Dorrigiv, Daniel Roche

School of Computer Science, University of Waterloo
Winter 2010

Dictionary ADT

A dictionary is a collection of items, each of which contains a key and some data and is called a key-value pair (KVP).
Keys can be compared and are typically unique.
Operations:

- $\operatorname{search}(k)$
- insert (k, v)
- delete(k)
- optional: join, isEmpty, size, etc.

Examples: symbol table, license plate database

Elementary Implementations

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space (if not, the "value" could be a pointer)
- Comparing keys takes constant time

Unordered array or linked list

```
search \Theta(n)
    insert \Theta(1)
delete \Theta(1) (after a search)
```

Ordered array or linked list
search $\Theta(\log n)$
insert $\Theta(n)$
delete $\Theta(n)$

Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.
Ordering Every key k in T.left is less than the root key. Every key k in T.right is greater than the root key.

BST Search and Insert

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: $\operatorname{search}(24)$

BST Search and Insert

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: $\operatorname{search}(24)$

BST Search and Insert

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: $\operatorname{search}(24)$

BST Search and Insert

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: $\operatorname{search}(24)$

BST Search and Insert

search (k) Compare k to current node, stop if found, else recurse on subtree unless it's empty
insert (k, v) Search for k, then insert (k, v) as new node
Example: insert $(24, \ldots)$

BST Delete

- If node is a leaf, just delete it.

BST Delete

- If node is a leaf, just delete it.

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor node and then delete

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor node and then delete

BST Delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor node and then delete

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case:

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case: $n-1=\Theta(n)$
- Best-case:

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case: $n-1=\Theta(n)$
- Best-case: $\lg (n+1)-1=\Theta(\log n)$
- Average-case:

Height of a BST

search, insert, delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case: $n-1=\Theta(n)$
- Best-case: $\lg (n+1)-1=\Theta(\log n)$
- Average-case: $\Theta(\log n)$
(just like recursion depth in quick-sort1)

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an AVL Tree is a BST with an additional structural property: The heights of the left and right subtree differ by at most 1 .
(The height of an empty tree is defined to be -1 .)
At each non-empty node, we store height (R) - height $(L) \in\{-1,0,1\}$:
-1 means the tree is left-heavy
0 means the tree is balanced
1 means the tree is right-heavy

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962,
an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1 .
(The height of an empty tree is defined to be -1 .)
At each non-empty node, we store $\operatorname{height}(R)-\operatorname{height}(L) \in\{-1,0,1\}$:
-1 means the tree is left-heavy
0 means the tree is balanced
1 means the tree is right-heavy

Why not just store the actual height?

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962,
an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1 .
(The height of an empty tree is defined to be -1 .)
At each non-empty node, we store $\operatorname{height}(R)-\operatorname{height}(L) \in\{-1,0,1\}$:
-1 means the tree is left-heavy
0 means the tree is balanced
1 means the tree is right-heavy

Why not just store the actual height?
It would take $\Theta(n \log \log n)$ space.

AVL insertion

To perform $\operatorname{insert}(T, k, v)$:

- First, insert (k, v) into T using usual BST insertion
- Then, move up the tree from the new leaf, updating balance factors.
- If the balance factor is $-1,0$, or 1 , then keep going.
- If the balance factor is ± 2, then call the fix algorithm to "rebalance" at that node.

How to "fix" an unbalanced AVL tree

Goal: change the structure without changing the order

Notice that if heights of A, B, C, D differ by at most 1 , then the tree is a proper AVL tree.

Right Rotation

This is a right rotation on node z :

Right Rotation

This is a right rotation on node z :

Note: Only two edges need to be moved, and two balances updated.

Left Rotation

This is a left rotation on node x :

Again, only two edges need to be moved and two balances updated.

Double Right Rotation

This is a double right rotation on node z :

First, a left rotation on the left subtree (x).

Double Right Rotation

This is a double right rotation on node z :

First, a left rotation on the left subtree (x). Second, a right rotation on the whole tree (z).

Double Left Rotation

This is a double left rotation on node x :

Right rotation on right subtree (z), followed by left rotation on the whole tree (x).

Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

```
fix(T)
T: AVL tree with T.balance = \pm2
1. if T.balance = -2 then
2.
3.
4. rotate-right(T)
5. else if T.balance =2 then
6.
7. rotate-right(T.right)
8. rotate-left(T)
```


AVL Tree Operations

search: Just like in BSTs, costs Θ (height)
insert: Shown already, total cost Θ (height)
fix will be called at most once.
delete: First search, then swap with successor (as with BSTs), then move up the tree and apply fix (as with insert).
fix may be called Θ (height) times.
Total cost is Θ (height).

AVL tree examples

Example: insert(8)

AVL tree examples

Example: insert(8)

AVL tree examples

Example: insert(8)

AVL tree examples

Example: insert(8)

AVL tree examples

AVL tree examples

AVL tree examples

AVL tree examples

AVL tree examples

Example: delete(22)

AVL tree examples

Height of an AVL tree

Define $N(h)$ to be the least number of nodes in a height- $h \mathrm{AVL}$ tree.
One subtree must have height at least $h-1$, the other at least $h-2$:

$$
N(h)= \begin{cases}1+N(h-1)+N(h-2), & h \geq 1 \\ 1, & h=0 \\ 0, & h=-1\end{cases}
$$

What sequence does this look like?

Height of an AVL tree

Define $N(h)$ to be the least number of nodes in a height- $h \mathrm{AVL}$ tree.
One subtree must have height at least $h-1$, the other at least $h-2$:

$$
N(h)= \begin{cases}1+N(h-1)+N(h-2), & h \geq 1 \\ 1, & h=0 \\ 0, & h=-1\end{cases}
$$

What sequence does this look like? The Fibonacci sequence!

$$
N(h)=F_{h+3}-1=\left\lceil\frac{\varphi^{h+3}}{\sqrt{5}}\right\rfloor-1, \text { where } \varphi=\frac{1+\sqrt{5}}{2}
$$

AVL Tree Analysis

Easier lower bound on $N(h)$:

$$
N(h)>2 N(h-2)>4 N(h-4)>8 N(h-6)>\cdots>2^{i} N(h-2 i) \geq 2^{\lfloor h / 2\rfloor}
$$

AVL Tree Analysis

Easier lower bound on $N(h)$:

$$
N(h)>2 N(h-2)>4 N(h-4)>8 N(h-6)>\cdots>2^{i} N(h-2 i) \geq 2^{\lfloor h / 2\rfloor}
$$

Since $n>2^{\lfloor h / 2\rfloor}, h \leq 2 \lg n$, and an AVL tree with n nodes has height $O(\log n)$. Also, $n \leq 2^{h+1}-1$, so the height is $\Theta(\log n)$.
\Rightarrow search, insert, delete all $\operatorname{cost} \Theta(\log n)$.

2-3 Trees

A 2-3 Tree is like a BST with additional structual properties:

- Every node either contains one KVP and two children, or two KVPs and three children.
- All the leaves are at the same level. (A leaf is a node with empty children.)
Searching through a 1-node is just like in a BST. For a 2-node, we must examine both keys and follow the appropriate path.

Insertion in a 2-3 tree

First, we search to find the leaf where the new key belongs.
If the leaf has only 1 KVP , just add the new one to make a 2 -node.
Otherwise, order the three keys as $a<b<c$. Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.

2-3 Tree Insertion

Example: insert(19)

2-3 Tree Insertion

Example: insert(41)

Deletion from a 2-3 Tree

As with BSTs and AVL trees, we first swap the KVP with its successor, so that we always delete from a leaf.

Say we're deleting KVP x from a node V :

- If X is a 2-node, just delete x.
- Elself X has a 2-node sibling U, perform a transfer: Put the "intermediate" KVP in the parent between V and U into V, and replace it with the adjacent KVP from U.
- Otherwise, we merge V and a 1 -node sibling U : Remove V and (recursively) delete the "intermediate" KVP from the parent, adding it to U.

2-3 Tree Deletion

Example: delete(43)

2-3 Tree Deletion

Example: delete(43)

2-3 Tree Deletion

Example: delete(43)

2-3 Tree Deletion

Example: delete(19)

2-3 Tree Deletion

Example: delete(19)

2-3 Tree Deletion

Example: delete(19)

2-3 Tree Deletion

Example: delete(42)

B-Trees

The 2-3 Tree is a specific type of B-tree:
A B-tree of minsize d is a search tree satisfying:

- Each node contains at most $2 d$ KVPs. Each non-root node contains at least d KVPs.
- All the leaves are at the same level.

Some people call this a B-tree of order $(2 d+1)$, or a $(d+1,2 d+1)$-tree. A 2-3 tree has $d=1$.
search, insert, delete work just like for 2-3 trees.

Height of a B-tree

What is the least number of KVPs in a height- h B-tree?

Level	Nodes	Node size	KVPs
0	1	1	1
1	2	d	$2 d$
2	$2(d+1)$	d	$2 d(d+1)$
3	$2(d+1)^{2}$	d	$2 d(d+1)^{2}$
\cdots	\cdots	\cdots	\cdots
h	$2(d+1)^{h-1}$	d	$2 d(d+1)^{h-1}$

$$
\text { Total: } 1+\sum_{i=0}^{h-1} 2 d(d+1)^{i}=2(d+1)^{h}-1
$$

Therefore height of tree with n nodes is $\Theta((\log n) /(\log d))$.

Analysis of B-tree operations

Assume each node stores its KVPs and child-pointers in a dictionary that supports $O(\log d)$ search, insert, and delete.

Then search, insert, and delete work just like for 2-3 trees, and each require Θ (height) node operations.

Total cost is $O\left(\frac{\log n}{\log d} \cdot(\log d)\right)=O(\log n)$.

Dictionaries in external memory

Tree-based data structures have poor memory locality: If an operation accesses m nodes, then it must access m spaced-out memory locations.

Observation: Accessing a single location in external memory (e.g. hard disk) automatically loads a whole block (or "page").

In an AVL tree or 2-3 tree, $\Theta(\log n)$ pages are loaded in the worst case.
If d is small enough so a $2 d$-node fits into a single page, then a B-tree of minsize d only loads $\Theta((\log n) /(\log d))$ pages.
This can result in a huge savings:
memory access is often the largest time cost in a computation.

B-tree variations

Max size $2 d+1$: Permitting one additional KVP in each node allows insert and delete to avoid backtracking via pre-emptive splitting and pre-emptive merging.

Red-black trees: Identical to a B-tree with minsize 1 and maxsize 3, but each 2-node or 3 -node is represented by 2 or 3 binary nodes, and each node holds a "color" value of red or black.

B $^{+}$-trees: All KVPs are stored at the leaves (interior nodes just have keys),
and the leaves are linked sequentially.

