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Dictionary ADT

A dictionary is a collection of jtems,

each of which contains a key and some data
and is called a key-value pair (KVP).

Keys can be compared and are typically unique.

Operations:
e search(k)
o insert(k,v)
o delete( k)
@ optional: join, isEmpty, size, etc.

Examples: symbol table, license plate database
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Elementary Implementations
Common assumptions:
@ Dictionary has n KVPs

@ Each KVP uses constant space
(if not, the “value” could be a pointer)

@ Comparing keys takes constant time

Unordered array or linked list
search ©(n)
insert ©(1)
delete ©(1) (after a search)

Ordered array or linked list
search ©(log n)
insert ©(n)
delete ©(n)
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Binary Search Trees (review)

Structure A BST is either empty or contains a KVP,
left child BST, and right child BST.

Ordering Every key k in T.left is less than the root key.
Every key k in T.right is greater than the root key.
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BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

Example: search(24)
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BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

Example: search(24)
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BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

insert(k,v) Search for k, then insert (k,v) as new node

Example: insert(24,...)
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BST Delete

o If node is a leaf, just delete it.
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BST Delete

o If node is a leaf, just delete it.
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BST Delete

o If node is a leaf, just delete it.

@ If node has one child, move child up
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BST Delete

o If node is a leaf, just delete it.

@ If node has one child, move child up
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BST Delete

o If node is a leaf, just delete it.
@ If node has one child, move child up

o Else, swap with successor node and then delete
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BST Delete

o If node is a leaf, just delete it.
@ If node has one child, move child up

o Else, swap with successor node and then delete
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Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
o Worst-case:
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Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
e Worst-case: n—1 = 0(n)

@ Best-case:
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Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
e Worst-case: n—1 = 0(n)
@ Best-case: Ig(n+1) — 1 = O(log n)
@ Average-case:
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Height of a BST

search, insert, delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
e Worst-case: n—1 = 0(n)
@ Best-case: Ig(n+1) — 1 = O(log n)
@ Average-case: O(log n)
(just like recursion depth in quick-sortI)
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AVL Trees

Introduced by Adel’son-Vel'skil and Landis in 1962,
an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be —1.)
At each non-empty node, we store height(R) — height(L) € {—1,0,1}:
—1 means the tree is left-heavy

0 means the tree is balanced

1 means the tree is right-heavy
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(The height of an empty tree is defined to be —1.)
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Why not just store the actual height?
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AVL Trees

Introduced by Adel’son-Vel'skil and Landis in 1962,
an AVL Tree is a BST with an additional structural property:
The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be —1.)
At each non-empty node, we store height(R) — height(L) € {—1,0,1}:
—1 means the tree is left-heavy

0 means the tree is balanced

1 means the tree is right-heavy

Why not just store the actual height?
It would take ©(nloglog n) space.
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AVL insertion

To perform insert(T, k, v):
e First, insert (k, v) into T using usual BST insertion
@ Then, move up the tree from the new leaf, updating balance factors.
o If the balance factor is —1, 0, or 1, then keep going.

@ If the balance factor is 42, then call the fix algorithm
to “rebalance” at that node.
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How to “fix" an unbalanced AVL tree

Goal: change the structure without changing the order

ANANY-NA

Notice that if heights of A, B, C, D differ by at most 1,
then the tree is a proper AVL tree.
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Right Rotation

This is a right rotation on node z:
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Right Rotation

This is a right rotation on node z:

Note: Only two edges need to be moved, and two balances updated.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 4 Winter 2010 11/29



Left Rotation

This is a left rotation on node x:

Again, only two edges need to be moved and two balances updated.
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Double Right Rotation

This is a double right rotation on node z:

First, a left rotation on the left subtree (x).
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Double Right Rotation

This is a double right rotation on node z:

o
AVAVAYA

First, a left rotation on the left subtree (x).
Second, a right rotation on the whole tree (z).
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Double Left Rotation

This is a double left rotation on node x:

Right rotation on right subtree (z),
followed by left rotation on the whole tree (x).
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Fixing a slightly-unbalanced AVL tree

Idea: ldentify one of the previous 4 situations, apply rotations

fix(T)
T: AVL tree with T.balance = £2
1. if T.balance = —2 then
if T.left.balance =1 then
rotate-left( T .left)
rotate-right(T)
else if T.balance =2 then
if T.right.balance = —1 then
rotate-right( T .right)
rotate-left(T)

® NSOk ®wN
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AVL Tree Operations

search: Just like in BSTs, costs ©(height)

insert: Shown already, total cost ©(height)
fix will be called at most once.

delete: First search, then swap with successor (as with BSTs),
then move up the tree and apply fix (as with insert).

fix may be called ©(height) times.

Total cost is ©(height).
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AVL tree examples

Example: insert(8)
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AVL tree examples

Example: insert(8)
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AVL tree examples

Example: insert(8)
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AVL tree examples

Example: delete(22)
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AVL tree examples

Example: delete(22)
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AVL tree examples

Example: delete(22)
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Height of an AVL tree

Define N(h) to be the /east number of nodes in a height-h AVL tree.
One subtree must have height at least h — 1, the other at least h — 2:
1+Nh-1)+N(h—-2), h>1

N(h) ={ 1, h=0
0, h=-1

What sequence does this look like?

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 4 Winter 2010 18 /29



Height of an AVL tree

Define N(h) to be the /east number of nodes in a height-h AVL tree.
One subtree must have height at least h — 1, the other at least h — 2:

1+Nh—1)+Nh—2), h>1
N(h)y={ 1, h=0
0, h=-1

What sequence does this look like? The Fibonacci sequence!

h+3

%) 1—|—\/§
N(h)= Fpi3—1= — 1, where p =
()= Fria-1= | £ 0

2
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AVL Tree Analysis

Easier lower bound on N(h):

N(h) > 2N(h—2) > 4N(h—4) > 8N(h—6) > --- > 2'N(h —2/) > 2lh/2]
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AVL Tree Analysis

Easier lower bound on N(h):

N(h) > 2N(h—2) > 4N(h—4) > 8N(h—6) > --- > 2'N(h —2/) > 2lh/2]

Since n > 221 h < 2lIgn,
and an AVL tree with n nodes has height O(log n).
Also, n < 21 — 1, so the height is ©(log n).

= search, insert, delete all cost ©(log n).
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2-3 Trees

A 2-3 Tree is like a BST with additional structual properties:

@ Every node either contains one KVP and two children,
or two KVPs and three children.

@ All the leaves are at the same level.
(A leaf is a node with empty children.)
Searching through a 1-node is just like in a BST.
For a 2-node, we must examine both keys and follow the appropriate path.
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Insertion in a 2-3 tree

First, we search to find the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 4 Winter 2010 21 /29



2-3 Tree Insertion
Example: insert(19)

25|43

EJES

[12] [21]24] [28] [33] [39]42] (48| |56]62]
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2-3 Tree Insertion

Example: insert(19)

25 [ 43|

EJES

[12] [21]24] [28] [33] [39]42] (48| |56]62]
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2-3 Tree Insertion
Example: insert(19)

43

EJES

[28] [33] [39]42] (48| |56]62]
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2-3 Tree Insertion
Example: insert(19)

25(43

31 36]

[12] [19] [24] [33] [39]42] (48| [56]62]
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2-3 Tree Insertion

Example: insert(41)

[18]21 3136

[12] [19] [24] [33] [39]42] (48| [56]62]
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2-3 Tree Insertion

Example: insert(41)

[18]21 3136

] [19] [2] Ed (@] [[e]
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2-3 Tree Insertion

Example: insert(41)

25 [ 43
(8]
[12] [19] [24] (28| [33] [39] [42] (48| [56]62]
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2-3 Tree Insertion

Example: insert(41)

[18]21
[12| [19] [24] [28] [33] [39] [42] [48] |56]62]
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2-3 Tree Insertion

Example: insert(41)

18]

[12] [19] [24] [28] [33] [39] [42] [48] [56]62]
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Deletion from a 2-3 Tree

As with BSTs and AVL trees, we first swap the KVP with its successor,
so that we always delete from a leaf.

Say we're deleting KVP x from a node V:
o If X is a 2-node, just delete x.

o Elself X has a 2-node sibling U, perform a transfer:
Put the “intermediate” KVP in the parent between V and U into V,
and replace it with the adjacent KVP from U.

@ Otherwise, we merge V' and a 1-node sibling U:
Remove V and (recursively) delete the “intermediate” KVP
from the parent, adding it to U.
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2-3 Tree Deletion

Example: delete(43)

18]

[12] [19] [24] [28] [33] [39] [42] [48] [56]62]

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 4 Winter 2010 24 /29



2-3 Tree Deletion

Example: delete(43)

18]

[12] [19] [24] [28] [33] [39] [42]
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2-3 Tree Deletion

Example: delete(43)

18]

[12| [19] [24] [28] [33] [39] [42]
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2-3 Tree Deletion

Example: delete(19)

18

B [>4] [28] [33] [39] [42]
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2-3 Tree Deletion

Example: delete(19)
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2-3 Tree Deletion

Example: delete(19)

[12] [21]24] (28] [33] [39] [42]
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2-3 Tree Deletion

Example: delete(42)

[12] [21]24] (28] [33] [39]
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2-3 Tree Deletion

Example: delete(42)

[12] [21]24] [28] [33]

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 4 Winter 2010 24 /29



2-3 Tree Deletion

Example: delete(42)

[12] [21]24] [28] [33] [39]41] [51] [62]
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2-3 Tree Deletion

Example: delete(42)

5]

(28] [33] [39[41] [51] [62]
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2-3 Tree Deletion

Example: delete(42)

36

31 48756 |

[28| [33] [39]41] [51] [62]
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B-Trees

The 2-3 Tree is a specific type of B-tree:

A B-tree of minsize d is a search tree satisfying:

@ Each node contains at most 2d KVPs.
Each non-root node contains at least d KVPs.

@ All the leaves are at the same level.

Some people call this a B-tree of order (2d + 1), or a (d + 1,2d + 1)-tree.
A 2-3 tree has d = 1.

search, insert, delete work just like for 2-3 trees.
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Height of a B-tree
What is the least number of KVPs in a height-h B-tree?

Level Nodes Node size KVPs
0 1 1 1
1 2 d 2d
2 2(d + 1) d 2d(d + 1)
3 2(d +1)2 d 2d(d + 1)?
h  2(d+1)"1t d 2d(d + 1)1
h—1 )
Total: 14+ ) 2d(d+1)' =2(d +1)" -1
i=0

Therefore height of tree with n nodes is ©((log n)/(log d)).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 4 Winter 2010 26 / 29



Analysis of B-tree operations

Assume each node stores its KVPs and child-pointers in a dictionary
that supports O(log d) search, insert, and delete.

Then search, insert, and delete work just like for 2-3 trees, and each
require ©(height) node operations.

) log n
Total cost is O (Iogd - (log d)) = O(log n).
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Dictionaries in external memory

Tree-based data structures have poor memory locality:
If an operation accesses m nodes, then it must access
m spaced-out memory locations.

Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

In an AVL tree or 2-3 tree, ©(log n) pages are loaded in the worst case.

If d is small enough so a 2d-node fits into a single page,
then a B-tree of minsize d only loads ©((log n)/(log d)) pages.

This can result in a huge savings:
memory access is often the largest time cost in a computation.
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B-tree variations

Max size 2d + 1: Permitting one additional KVP in each node
allows insert and delete to avoid backtracking via
pre-emptive splitting and pre-emptive merging.

Red-black trees: |dentical to a B-tree with minsize 1 and maxsize 3,
but each 2-node or 3-node is represented by 2 or 3 binary nodes,
and each node holds a “color” value of red or black.

B -trees: All KVPs are stored at the leaves
(interior nodes just have keys),
and the leaves are linked sequentially.
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