
Module 3: Sorting and Randomized Algorithms

CS 240 - Data Structures and Data Management

Reza Dorrigiv, Daniel Roche

School of Computer Science, University of Waterloo

Winter 2010

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 1 / 24

Selection vs. Sorting

We have already seen some algorithms for the selection problem:
Given an array A of n numbers, find the kth largest number.
(note: we always count from zero, so 0 ≤ k < n)

Best heap-based algorithm had time cost Θ (n + k log n).
For median selection, k =

⌊
n
2

⌋
, giving cost Θ(n log n).

This is the same cost as our best sorting algorithms.

Question: Can we do selection in linear time?

The quick-select algorithm answers this question in the affirmative.

Observation: Finding the element at a given position is tough, but
finding the position of a given element is simple.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 2 / 24

Selection vs. Sorting

We have already seen some algorithms for the selection problem:
Given an array A of n numbers, find the kth largest number.
(note: we always count from zero, so 0 ≤ k < n)

Best heap-based algorithm had time cost Θ (n + k log n).
For median selection, k =

⌊
n
2

⌋
, giving cost Θ(n log n).

This is the same cost as our best sorting algorithms.

Question: Can we do selection in linear time?
The quick-select algorithm answers this question in the affirmative.

Observation: Finding the element at a given position is tough, but
finding the position of a given element is simple.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 2 / 24

Selection vs. Sorting

We have already seen some algorithms for the selection problem:
Given an array A of n numbers, find the kth largest number.
(note: we always count from zero, so 0 ≤ k < n)

Best heap-based algorithm had time cost Θ (n + k log n).
For median selection, k =

⌊
n
2

⌋
, giving cost Θ(n log n).

This is the same cost as our best sorting algorithms.

Question: Can we do selection in linear time?
The quick-select algorithm answers this question in the affirmative.

Observation: Finding the element at a given position is tough, but
finding the position of a given element is simple.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 2 / 24

Crucial Subroutines

quick-select and the related algorithm quick-sort rely on two subroutines:

choose-pivot(A): Choose an index i such that A[i] will make a
good pivot (hopefully near the middle of the order).

partition(A, p): Using pivot A[p], rearrange A so that
all items ≤ the pivot come first,
followed by the pivot,
followed by all items greater than the pivot.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 3 / 24

Selecting a pivot

Ideally, we would select a median as the pivot.
But this is the problem we’re trying to solve!

First idea: Always select first element in array

choose-pivot1(A)
1. return 0

We will consider more sophisticated ideas later on.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 4 / 24

Partition Algorithm

partition(A, p)
A: array of size n, p: integer s.t. 0 ≤ p < n
1. swap(A[0], A[p])
2. i ← 1, j ← n − 1
3. while i < j do
4. while A[i] ≤ A[0] and i < n do
5. i ← i + 1
6. while A[j] > A[0] and j > 0 do
7. j ← j − 1
8. if i < j then
9. swap(A[i], A[j])
10. swap(A[0], A[j])
11. return j

Idea: Keep swapping the outer-most wrongly-positioned pairs.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 5 / 24

QuickSelect Algorithm

quick-select1(A, k)
A: array of size n, k : integer s.t. 0 ≤ k < n
1. p ← choose-pivot1(A)
2. i ← partition(A, p)
3. if i = k then
4. return A[i]
5. else if i > k then
6. return quick-select1(A[0, 1, . . . , i − 1], k)
7. else if i < k then
8. return quick-select1(A[i + 1, i + 2, . . . , n − 1], k − i − 1)

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 6 / 24

Analysis of quick-select1

Worst-case analysis: Recursive call could always have size n − 1.

Recurrence given by T (n) =

{
T (n − 1) + cn, n ≥ 2
d , n = 1

Solution: T (n) = cn + c(n − 1) + c(n − 2) + · · ·+ c · 2 + d ∈ Θ(n2)

Best-case analysis: First chosen pivot could be the kth element
No recursive calls; total cost is Θ(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 7 / 24

Analysis of quick-select1

Worst-case analysis: Recursive call could always have size n − 1.

Recurrence given by T (n) =

{
T (n − 1) + cn, n ≥ 2
d , n = 1

Solution: T (n) = cn + c(n − 1) + c(n − 2) + · · ·+ c · 2 + d ∈ Θ(n2)

Best-case analysis: First chosen pivot could be the kth element
No recursive calls; total cost is Θ(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 7 / 24

Average-case analysis of quick-select1

Assume all n! permutations are equally likely.
Average cost is sum of costs for all permutations, divided by n!.

Define T (n, k) as average cost for selecting kth item from size-n array:

T (n, k) = cn +
1

n

(
k−1∑
i=0

T (n − i − 1, k − i) +
n−1∑

i=k+1

T (i , k)

)

We could analyze this recurrence directly,
or be a little lazier and still get the same asymptotic result.

For simplicity, define T (n) = max
0≤k<n

T (n, k).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 8 / 24

Average-case analysis of quick-select1

The cost is determined by i , the position of the pivot A[0].
For more than half of the n! permutations, n

4 ≤ i < 3n
4 .

In this case, the recursive call will have length at most
⌊

3n
4

⌋
, for any k .

The average cost is then given by:

T (n) ≤

{
cn + 1

2

(
T (n) + T

(
b3n/4c

))
, n ≥ 2

d , n = 1

Rearranging gives:

T (n) ≤ 2cn + T
(
b3n/4c

)
≤ 2cn + 2c(3n/4) + 2c(9n/16) + · · ·+ d

≤ d + 2cn
∞∑
i=0

(
3

4

)i

∈ O(n)

Since T (n) must be Ω(n) (why?), T (n) ∈ Θ(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 9 / 24

Average-case analysis of quick-select1

The cost is determined by i , the position of the pivot A[0].
For more than half of the n! permutations, n

4 ≤ i < 3n
4 .

In this case, the recursive call will have length at most
⌊

3n
4

⌋
, for any k .

The average cost is then given by:

T (n) ≤

{
cn + 1

2

(
T (n) + T

(
b3n/4c

))
, n ≥ 2

d , n = 1

Rearranging gives:

T (n) ≤ 2cn + T
(
b3n/4c

)
≤ 2cn + 2c(3n/4) + 2c(9n/16) + · · ·+ d

≤ d + 2cn
∞∑
i=0

(
3

4

)i

∈ O(n)

Since T (n) must be Ω(n) (why?), T (n) ∈ Θ(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 9 / 24

Randomized algorithms

A randomized algorithm is one which relies on some random numbers
in addition to the input.
The cost will depend on the input and the random numbers used.

Generating random numbers: Computers can’t generate randomness.
Instead, some external source is used (e.g. clock, mouse, gamma rays,. . .)

This is expensive, so we use a pseudo-random number generator (PRNG),
a deterministic program that uses a true-random initial value or seed .
This is much faster and often indistinguishable from truly random.

Goal: To shift the probability distribution from what we can’t control
(the input), to what we can control (the random numbers).
There should be no more bad instances, just unlucky numbers.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 10 / 24

Randomized algorithms

A randomized algorithm is one which relies on some random numbers
in addition to the input.
The cost will depend on the input and the random numbers used.

Generating random numbers: Computers can’t generate randomness.
Instead, some external source is used (e.g. clock, mouse, gamma rays,. . .)

This is expensive, so we use a pseudo-random number generator (PRNG),
a deterministic program that uses a true-random initial value or seed .
This is much faster and often indistinguishable from truly random.

Goal: To shift the probability distribution from what we can’t control
(the input), to what we can control (the random numbers).
There should be no more bad instances, just unlucky numbers.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 10 / 24

Randomized algorithms

A randomized algorithm is one which relies on some random numbers
in addition to the input.
The cost will depend on the input and the random numbers used.

Generating random numbers: Computers can’t generate randomness.
Instead, some external source is used (e.g. clock, mouse, gamma rays,. . .)

This is expensive, so we use a pseudo-random number generator (PRNG),
a deterministic program that uses a true-random initial value or seed .
This is much faster and often indistinguishable from truly random.

Goal: To shift the probability distribution from what we can’t control
(the input), to what we can control (the random numbers).
There should be no more bad instances, just unlucky numbers.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 10 / 24

Expected running time

Define T (I , R) as the running time of the randomized algorithm for a
particular input I and the sequence of random numbers R.

The expected running time T
(exp)
A (I) of a randomized algorithm A for a

particular input I is the “expected” value for T (I , R):

T
(exp)
A (I) = E[T (I , R)] =

∑
R

T (I , R) · Pr [R]

The worst-case expected running time is then

T
(exp)
A (n) = max

size(I)=n
T

(exp)
A (I).

For many randomized algorithms, worst-, best-, and average-case expected
times are the same (why?).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 11 / 24

Expected running time

Define T (I , R) as the running time of the randomized algorithm for a
particular input I and the sequence of random numbers R.

The expected running time T
(exp)
A (I) of a randomized algorithm A for a

particular input I is the “expected” value for T (I , R):

T
(exp)
A (I) = E[T (I , R)] =

∑
R

T (I , R) · Pr [R]

The worst-case expected running time is then

T
(exp)
A (n) = max

size(I)=n
T

(exp)
A (I).

For many randomized algorithms, worst-, best-, and average-case expected
times are the same (why?).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 11 / 24

Randomized QuickSelect

random(n) returns an integer uniformly from {0, 1, 2, . . . , n − 1}.

First idea: Randomly permute the input first using shuffle:

shuffle(A)
A: array of size n
1. for i ← 0 to n − 2 do
2. swap(A[i], A[i + random(n − i))

Expected cost becomes the same as the average cost, which is Θ(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 12 / 24

Randomized QuickSelect

Second idea: Change the pivot selection.

choose-pivot2(A)
1. return random(n)

quick-select2(A, k)
1. p ← choose-pivot2(A)
2. . . .

With probability at least 1
2 , the random pivot has position n

4 ≤ i < 3n
4 ,

so the analysis is just like that for the average-case.
The expected cost is again Θ(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 13 / 24

Worst-case linear time
Blum, Floyd, Pratt, Rivest, and Tarjan invented the “medians-of-five”
algorithm in 1973 for pivot selection:

choose-pivot3(A)
A: array of size n
1. m← bn/5c − 1
2. for i ← 0 to m do
3. j ← index of median of A[5i , . . . , 5i + 4]
4. swap(A[i], A[j])
5. return quick-select3(A[0, . . . , m], bm/2c)

quick-select3(A, k)
1. p ← choose-pivot3(A)
2. . . .

This mutually recursive algorithm can be shown to be Θ(n) in the worst
case, but it’s a little beyond the scope of this course.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 14 / 24

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

quick-sort1(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot1(A)
3. i ← partition(A, p)
4. quick-sort1(A[0, 1, . . . , i − 1])
5. quick-sort1(A[i + 1, . . . , size(A)− 1])

Worst case: T (worst)(n) = T (worst)(n − 1) + Θ(n)
Same as quick-select1; T (worst)(n) ∈ Θ(n2)

Best case: T (best)(n) = T (best)(
⌊

n−1
2

⌋
) + T (best)(

⌈
n−1
2

⌉
) + Θ(n)

Similar to merge-sort; T (best)(n) ∈ Θ(n log n)

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 15 / 24

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

quick-sort1(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot1(A)
3. i ← partition(A, p)
4. quick-sort1(A[0, 1, . . . , i − 1])
5. quick-sort1(A[i + 1, . . . , size(A)− 1])

Worst case: T (worst)(n) = T (worst)(n − 1) + Θ(n)
Same as quick-select1; T (worst)(n) ∈ Θ(n2)

Best case: T (best)(n) = T (best)(
⌊

n−1
2

⌋
) + T (best)(

⌈
n−1
2

⌉
) + Θ(n)

Similar to merge-sort; T (best)(n) ∈ Θ(n log n)

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 15 / 24

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

quick-sort1(A)
A: array of size n
1. if n ≤ 1 then return
2. p ← choose-pivot1(A)
3. i ← partition(A, p)
4. quick-sort1(A[0, 1, . . . , i − 1])
5. quick-sort1(A[i + 1, . . . , size(A)− 1])

Worst case: T (worst)(n) = T (worst)(n − 1) + Θ(n)
Same as quick-select1; T (worst)(n) ∈ Θ(n2)

Best case: T (best)(n) = T (best)(
⌊

n−1
2

⌋
) + T (best)(

⌈
n−1
2

⌉
) + Θ(n)

Similar to merge-sort; T (best)(n) ∈ Θ(n log n)

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 15 / 24

Average-case analysis of quick-sort1

Of all n! permutations, (n − 1)! have pivot A[0] at a given position i .

Average cost over all permutations is given by:

T (n) =
1

n

n−1∑
i=0

(
T (i) + T (n − i − 1)

)
+ Θ(n), n ≥ 2

It is possible to solve this recursion directly.

Instead, notice that the cost at each level of the recursion tree is O(n).
So let’s consider the height (or “depth”) of the recursion, on average.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 16 / 24

Average-case analysis of quick-sort1

Of all n! permutations, (n − 1)! have pivot A[0] at a given position i .

Average cost over all permutations is given by:

T (n) =
1

n

n−1∑
i=0

(
T (i) + T (n − i − 1)

)
+ Θ(n), n ≥ 2

It is possible to solve this recursion directly.

Instead, notice that the cost at each level of the recursion tree is O(n).
So let’s consider the height (or “depth”) of the recursion, on average.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 16 / 24

Average depth of recursion for quick-sort1

Define H(n) as the average recursion depth for size-n inputs. So

H(n) =

{
1 + 1

n

∑n−1
i=0 max

(
H(i), H(n − i − 1)

)
, n ≥ 2

0, n ≤ 1

Let i be the position of the pivot A[0].
Again, n

4 ≤ i < 3n
4 for more than half of all permutations.

Then larger recursive call has length at most
⌊

3n
4

⌋
.

This will determine the recursion depth at least half the time.

Therefore H(n) ≤ 1 + 1
4

(
3H(n) + H(

⌊
3n
4

⌋
)
)

for n ≥ 2,
which simplifies to H(n) ≤ 4 + H(

⌊
3n
4

⌋
).

So H(n) ∈ O(log n).
Average cost is O(nH(n)) ∈ O(n log n).
Since best-case is Θ(n log n), average must be Θ(n log n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 17 / 24

Average depth of recursion for quick-sort1

Define H(n) as the average recursion depth for size-n inputs. So

H(n) =

{
1 + 1

n

∑n−1
i=0 max

(
H(i), H(n − i − 1)

)
, n ≥ 2

0, n ≤ 1

Let i be the position of the pivot A[0].
Again, n

4 ≤ i < 3n
4 for more than half of all permutations.

Then larger recursive call has length at most
⌊

3n
4

⌋
.

This will determine the recursion depth at least half the time.

Therefore H(n) ≤ 1 + 1
4

(
3H(n) + H(

⌊
3n
4

⌋
)
)

for n ≥ 2,
which simplifies to H(n) ≤ 4 + H(

⌊
3n
4

⌋
).

So H(n) ∈ O(log n).
Average cost is O(nH(n)) ∈ O(n log n).
Since best-case is Θ(n log n), average must be Θ(n log n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 17 / 24

More notes on QuickSort

We can randomize by using choose-pivot2, giving
Θ(n log n) expected time for quick-sort2.

We can use choose-pivot3 (along with quick-select3)
to get quick-sort3 with Θ(n log n) worst-case time.

We can use tail recursion to save space on one of the recursive calls.
By making sure the other one is always smaller, the auxiliary space is
Θ(log n) in the worst case, even for quick-sort1.

QuickSort is often the most efficient algorithm in practice.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 18 / 24

Lower bounds for sorting

We have seen many sorting algorithms:

Sort Running time Analysis

Selection Sort Θ(n2) worst-case

Insertion Sort Θ(n2) worst-case

Merge Sort Θ(n log n) worst-case

Heap Sort Θ(n log n) worst-case

quick-sort1 Θ(n log n) average-case
quick-sort2 Θ(n log n) expected
quick-sort3 Θ(n log n) worst-case

Question: Can one do better than Θ(n log n)?

Answer: Yes and no! It depends on what we allow .

No: Comparison-based sorting lower bound is Ω(n log n).

Yes: Non-comparison-based sorting can achieve O(n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 19 / 24

The Comparison Model

In the comparison model data can only be accessed in two ways:

comparing two elements

moving elements around (e.g. copying, swapping)

This makes very few assumptions on the kind of things we are sorting.
We count the number of above operations.

All sorting algorithms seen so far are in the comparison model.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 20 / 24

Lower bound for sorting in the comparison model

Theorem. Any correct comparison-based sorting algorithm requires at
least Ω(n log n) comparison operations.

Proof.

A correct algorithm takes different actions (moves, swaps, etc.) for
each of the n! possible permutations.
The choice of actions is determined only by comparisons.

The algorithm can be viewed as a decision tree.
Each internal node is a comparison, each leaf is a set of actions.
Each permutation must correspond to a leaf.
The worst-case number of comparisons is the longest path to a leaf.
Since the tree has at least n! leaves, the height is at least lg n!.
Therefore worst-case number of comparisons is Ω(n log n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 21 / 24

Lower bound for sorting in the comparison model

Theorem. Any correct comparison-based sorting algorithm requires at
least Ω(n log n) comparison operations.

Proof.

A correct algorithm takes different actions (moves, swaps, etc.) for
each of the n! possible permutations.
The choice of actions is determined only by comparisons.
The algorithm can be viewed as a decision tree.
Each internal node is a comparison, each leaf is a set of actions.
Each permutation must correspond to a leaf.

The worst-case number of comparisons is the longest path to a leaf.
Since the tree has at least n! leaves, the height is at least lg n!.
Therefore worst-case number of comparisons is Ω(n log n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 21 / 24

Lower bound for sorting in the comparison model

Theorem. Any correct comparison-based sorting algorithm requires at
least Ω(n log n) comparison operations.

Proof.

A correct algorithm takes different actions (moves, swaps, etc.) for
each of the n! possible permutations.
The choice of actions is determined only by comparisons.
The algorithm can be viewed as a decision tree.
Each internal node is a comparison, each leaf is a set of actions.
Each permutation must correspond to a leaf.
The worst-case number of comparisons is the longest path to a leaf.
Since the tree has at least n! leaves, the height is at least lg n!.
Therefore worst-case number of comparisons is Ω(n log n).

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 21 / 24

Counting Sort

Requirement: Each A[i] satisfies 0 ≤ A[i] < k ; k is given.

counting-sort(A, k)
A: array of size n, k : positive integer
1. C ← array of size k , filled with zeros
2. for i ← 0 to n − 1 do
3. increment C [A[i]]
4. for i ← 1 to k − 1 do
5. C [i]← C [i] + C [i − 1]
6. B ← copy(A)
7. for i ← n − 1 down to 0 do
8. decrement C [B[i]]
9. A[C [B[i]]]← B[i]

Time cost: Θ(n + k), which is Θ(n) if k ∈ O(n).
Auxiliary space: Θ(n + k), can be made Θ(k)
counting-sort is stable: equal items stay in original order.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 22 / 24

Counting Sort

Requirement: Each A[i] satisfies 0 ≤ A[i] < k ; k is given.

counting-sort(A, k)
A: array of size n, k : positive integer
1. C ← array of size k , filled with zeros
2. for i ← 0 to n − 1 do
3. increment C [A[i]]
4. for i ← 1 to k − 1 do
5. C [i]← C [i] + C [i − 1]
6. B ← copy(A)
7. for i ← n − 1 down to 0 do
8. decrement C [B[i]]
9. A[C [B[i]]]← B[i]

Time cost: Θ(n + k), which is Θ(n) if k ∈ O(n).
Auxiliary space: Θ(n + k), can be made Θ(k)
counting-sort is stable: equal items stay in original order.

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 22 / 24

Radix Sort

Requirement: Each A[i] is a string of d digits xd−1xd−2 · · · x0,
and each xi satisfies 0 ≤ xi < k .
Example: integers between 0 and kd − 1

radix-sort(A, d , k)
A: array of size n, d : positive integer, k : positive integer
1. for i ← 0 to d − 1 do
2. Call counting-sort(A, k) with each xi as the key

Time cost: Θ(d(n + k))

Auxiliary space: Θ(n + k)

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 23 / 24

Radix Sort

Requirement: Each A[i] is a string of d digits xd−1xd−2 · · · x0,
and each xi satisfies 0 ≤ xi < k .
Example: integers between 0 and kd − 1

radix-sort(A, d , k)
A: array of size n, d : positive integer, k : positive integer
1. for i ← 0 to d − 1 do
2. Call counting-sort(A, k) with each xi as the key

Time cost: Θ(d(n + k))

Auxiliary space: Θ(n + k)

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 23 / 24

Summary of sorting

Randomized algorithms can eliminate “bad cases”

Best-case, worst-case, average-case, expected-case can all differ

Sorting is an important and very well-studied algorithm

Can be done in Θ(n log n) time; faster is not possible for general input

HeapSort is the only fast algorithm we have seen with
O(1) auxiliary space.

QuickSort is often the fastest in practice

MergeSort is also Θ(n log n), selection & insersion sorts are Θ(n2).

CountingSort, RadixSort can achieve o(n log n) if the input is special

Reza Dorrigiv, Daniel Roche (CS, UW) CS240 - Module 3 Winter 2010 24 / 24

	QuickSelect
	Selection vs. Sorting
	Crucial Subroutines
	Selecting a pivot
	Partition Algorithm
	QuickSelect Algorithm
	Analysis of quick-select1
	Average-case analysis of quick-select1
	Average-case analysis of quick-select1
	Randomized algorithms
	Expected running time
	Randomized QuickSelect
	Randomized QuickSelect
	Worst-case linear time

	QuickSort
	QuickSort
	Average-case analysis of quick-sort1
	Average depth of recursion for quick-sort1
	More notes on QuickSort

	Lower Bounds
	Lower bounds for sorting
	The Comparison Model
	Lower bound for sorting in the comparison model

	Non-comparison based sorting
	Counting Sort
	Radix Sort
	Summary of sorting

