SI413 Unit 11: OOP Implementation

Chris Brown (wcbrown@usna.edu)

Fall 2023

Object oriented programming (OOP) has four central ideas: encapsulation, data hiding, inheritance and
polymorphism. We are doing to focus on encapsulation, inheritance and polymorphism, and specifically focus
on how they are implemented in languages like C++ and Java. Remember that an “object” in OOP is a
collection into a single package of related pieces of data and functions operating on that data.

1 Structs in languages like C++ and Java

First we need to discuss how data gets packaged together in languages like C, C++ and Java. Let’s just look
at a simple struct/class definition like this:

class Foo

{
int i;
int j;
double y;

b

In this case we need at least 16 bytes, because each int takes 4 bytes and the double takes 8. The bytes for
the fields are typically laid out sequentially, in the order fields appear textually in the class definition. So for
Foo, the first four bytes are i, the next four are j, and the last eight are y.

D)
Hloyles Y by les 2 bytes

So the compiler/interpreter will keep track of the offset of each field in the struct/class. If you access a field,
the compiler will know its type (and thus how many bytes) and its offset within the object, so it can compute
exactly which bytes belong to that object. The example below shows how the compiler really transforms field
access within structs to nothing more than pointer arithmetic with offsets and some type casting.

class Foo // Offset
{

int i; // 0
int j; /)4
double y; // 8

b

int main() {

// Ezample code (as the compiler translates it)

Foo f; // f = (16 bytes of space on the stack);
f.i =7; J/ *(intx)(6f + 0) = 7;

f.j] = 42; /) *(intx)(Bf + 4) = 42;

mailto:wcbrown@usna.edu

f.y = 0.357 // *(doublex)(&f + 8) = 0.8357;
}

If you don’t believe me, you can try this little experiment. Compile and run the code below, and you will
see that the fields are assigned their proper values using the “pointer to f 4 offset, cast to the proper type”
method:

#include <iostream>
using namespace std;

class Foo
{

public:

int i,j;
double y;
s

int main()

{

Foo f;

// Assign values to fields as the compiler does it

// Note, the cast to unsigned charx is to treat [as a raw pointer
*(int *) ((unsigned char+)&f + 0) = 7;
*(int x) ((unsigned charx)&f + 4) 42;
*(double x) ((unsigned charx)&f + 8) = 0.357;

// Print out letting the compiler do the hard stuff
cout << f.i << endl;

cout << f.j << endl;

cout << f.y << endl;

return 0;

1.1 A quick note on the reality of the placement of fields

For efficiency reasons, compilers typically prefer to align N-byte objects to start at memory locations with
addresses that are zero mod N. For example, doubles start at addresses that (in hex!) end in either zero or
eight, whereas ints start at addresses that (in hex!) end in 0, 4, 8 or C (note that C=12 in hex). This means
that the layout of fields in objects might leave gaps of unused memory.

For example, consider this code, where the struct now has only one int and one double field:

#include <iostream>
using namespace std ;

class Foo

{

public:
int i;

double y;

};

int main()

{

Foo f;
cout << "sizeof (f) =,
<< sizeof(f) << endl
<< &f << "f" << endl
<< &f.i << "Uf. 1" << endl
<< &f.y << "Uf.y" << endl;
return 0;

n

}

Here is what the output might look like when we compile and run it:

sizeof (f) = 16
0x7ffc208eel60 f
0x7ffc208eel60 f.1i
0x7ffc208eel68 f.y

« First notice that the size of a Foo object is 16 bytes even though one 4-byte int and one 8-byte double
should only take 12 bytes.

e Second notice that the the address shows that the int i occupies the first four bytes of the Foo object
(the address of f and f.i are the same), and the double y occupies the final eight bytes. This leaves a
4-byte gap between them!

e This gap occurs because the compiler wants to align the 8-byte double on 8-byte boundaries — i.e. it
wants addresses ending in either 0 or 8. That forces a gap.

In other words, the struct layout now looks like this:

R7/ZE
Bloyles Ubiges © bytes

Of course these issues of alignment are not usually something we think much about, but when you want to
be as efficient as possible with memory, you might have to take it into account!

2 Methods (aka member functions): part 1, the non-polymophic
case

In this section we’ll examine how methods (aka member functions) are implemented in languages like C++
and Java in the case in which there is no polymorphism. Suppose we have something like this:

class Foo {
public int i;
public int j;
public double y;

public int bar() {
i+
return j;
}
}

... where there is no inheritance and thus no polymorphism to worry about. The method “bar” is different
from normal functions because it has access to the fields of the object on which it was called. For example, if

we have Foo f and call f.bar(), the “bar” function will access f’s i and j fields. We handle this by rewriting
methods to add a pointer to the object on which the method was called as the first parameter to the function.

If translating the above to C (to see how it would get compiled), the bar method might be written like:

int bar (Foox this) {
this—i++;
return this—j;

}

or actually, taking account what we understand about how structs work, this function definition would be
compiled to:

int bar(Foox this) {
*(int %) ((unsigned charx)this + 0)++; // offset 0 for i
return x(int) ((unsigned charx)this + 4); // offset 4 for j

}

Additionally, each method call would have to be rewritten as well, so that for example f.bar() is rewritten as
bar(f)

In this way methods (aka member functions) and method calls are nothing more than syntactic sugar: we
can systematically rewrite them as normal function definitions and normal function calls. At least for “final”
methods in Java or non-virtual member functions in C++ (i.e. when there is no polymorphism) this is how
things work.

If you look at rewritten version of bar above, you see that bar picks out the fields of the object based solely
on offsets from the “this” pointer. That’s important!

3 Inheritance

The fundamental problem with inheritance is that code that works with objects of the base class should also
work with objects of the derived class types. Let’s continue with the class Foo from the previous section and
derive from it a new class Foov2

class Foov2 extends Foo {
public boolean tag;
public void rat () {
// print out the walue of y and tag with a space between
System . out . format ("%g %b%n" , y, tag);
}

}s
...and let’s suppose that we instantiate a Foov2 object and set some of its fields and call some of its methods

Foov2 {2 = new Foov2();

2.1 = 42;
f2.j = 23; // <—— How does any of this work?!?!?
f2.y = 3.5;

f2 .tag = true;
System.out.println (f2.bar ());
f2 .rat ();

Let’s do a deep dive and see how this might actually work.

e How are the fields in an object of the derived class laid out?

The layout of the derived class is simple: the compiler concatenates the object layout of the base class
with the layout for the new fields of the derived class. That means that field “bool tag;” will just be
stuck on the end of the i,j,y fields, which are laid out just as they are for class Foo on its own.

I S/
Hoyles Ubyles B lytes 7 bytes
1 193{-&

We know that getting/setting fields is really just done by offsets from the this pointer, and now we
know that those offsets are enchanged for the fields inherited from the base class.

e How do calls of methods from the base class work on objects of the derived class?

Let’s consider the method bar() from the base class. As we saw, that method definition is actually
syntactic sugar. It is compiled as something like this (in C syntax):

int bar(unsigned charx this) {
intx iptr = (intx)(ptr + 0); // offset 0
intx jptr = (intx)(ptr + 4); // offset 4
*iptr++;
return xjptr;

}

Now if we execute this code with a pointer to a Foov2 object as its argument, like bar(&f2), what
happens? Well: f2—>i sits at offset 0 and f2—>j sits at offset 4, so ... the function still works perfectly.
It is blissfully unaware that at offset 16 from &f2 there is more data that pure Foo objects wouldn’t
have. It never looks beyond the offsets of fields in Foo objects.

So inherited methods simply work without any extra shennanigans purely as a by-product of the way
new fields of the derived class are contatenated onto the field of the base class.

¢ How do new methods in the derived class work?

So how do new methods of the derived class work? Hopefully the preceeding discussion makes it clear.
They work just like the methods from the base class work, except that they may reference fields from
the derived class (i.e. offsets beyond the area of memory in which the fields of the base class live).

4 Methods (aka member functions): part 2, polymorphic functions!

So now we get to the last issue: how do polymorphic function calls work? C++ and Java handle polymorphic
calls similarly from an implementation perspective. From a programmer’s perspective, an important difference
is that functions are polymorphic by default in Java (but you can turn it off by marking a method “final”),
but in C++ functions are by default not polymorphic (though you can turn it on by marking a method
“virtual”). So let’s make the function bar() in class Foo polymorphic, and let’s override it in class Foov2.
We’ll set it up so that if there are no command-line arguments, pointer p points to a Foo object, and if there
are command-line arguments pointer p points to a Foov2 object.

We’re doing this in C++ now so we can actually look at the addresses at run-time and see how it works, but
it will be the same if we compiled from java. Here’s the source code:

#include <iostream >
using namespace std;

class Foo
{
public:
int i,j;
double y;
virtual int bar() { return 23; }

}s

class Foov2 : public Foo
{
public:

bool tag;

int bar() { return 42; }

b
int offset (void+* p, voidx q) { return (unsigned charx)q — (unsigned charx)p; }

int main(int argc, charxx argv)
{
Foo f1;
Foov2 2
Foox p = arge = 1 7 &fl : &f2;
cout << "p—>bar (). .=," << p—bar() << endl;
// T —————Polymorphic call
cout << "sizeof (xp). ="
<< sizeof(xp) << endl
<< p << "p" << endl
<< &p—i << "up—it << "Luuoffset " << offset (p,&p—>i) << endl
<< &p—>j << "up—>i" << "Luuoffset " << offset (p,&p—>j) << endl
<< &p—y << "ip—y " << "Luuoffset)" << offset (p,&p—y) << endl;
return 0;

}

So now we’ll run this program twice, once with no command-line arguments and once with command-line
arguments.

No command-line args:

$./a.out

p—bar() = 23

sizeof (xp) = 24

0x7fffbab96040 p
0x7fffbab96048 p—>i offset 8
0x7fffbab9604c p—>i offset 12
0x7fffbab96050 p—>y offset 16

With command-line args:

$./a.out dummy

p—bar () = 42

sizeof (xp) = 24

0x7ffe6leeat620 p
Ox7ffe6leea628 p—>i offset 8
Ox7ffe6leeab2c p—>i offset 12
0x7ffe6leea630 p—>y offset 16

This is the prototypical polymorphic function call. We have one call site in the code — p—>bar() — and
sometimes that call site results in Foo’s bar() function getting called, and other times it results in Foov2’s
bar() function getting called. That decision, note, is a runtime decision. The compiler doesn’t know which
version of bar() will be called, and it can change from run to run (or in other examples where we have loops,
it can change within a single run of the program).

Important: The secret to how this is implemented hinted at by the other output of this program. Did you
notice that the offset of field i, the first field in the Foo object, jumped? It went from offset 0 to offset 8.
Why? And what do you think the compiler is doing with those first eight bytes in a Foo object?

Because we have marked bar() as “virtual” in class Foo, the compiler has to handle polymorphic function
calls, and the extra eight bytes that have been inserted into the front of Foo objects is integral to how this is
done. Those first eight bytes comprise a pointer to a data structure called the “vtable” for the class.

Foo

vioble ponter A 3
Bbytes Boyles Hlyles 2 bytes

colt
viable ponter vl) % 7 / / / / / /.
Boytes Rogles dlgles Blytes T 7 bytes

1 b\\"l‘&

If we were to print the value of the vtable pointer for any instance of Foo, it would always be the same. So
the vtable is shared by all instances of the class. The vtable pointer for Foov2 instances are all the same as
one another, but different from the Foo vtable pointers. So in some sense, the vtable pointer is what makes
Foo instances different from Foov2 instances. The vtable contains function pointers for methods at fixed
offsets just as the instance contains values for data fields at fixed offsets. When we make the call p—>bar()
here’s what happens:

1. the first 8 bytes of the memory pointed to by p is read (this is the vtable pointer)

2. we read the value of the function pointer for our function call from the vtable pointer plus some fixed
offset that is unique to bar

3. we call the function given by that function pointer

So suppose that the fixed offset associated with bar() is 24 bytes. We will read the function pointer at address
vtablepointer + 24. Since vtablepointer is different for Foo’s than for Foov2’s, we get a different function
address for Foo objects than for Foov2 objects.

Here’s one last demo which, I hope, will drive home this point.

#include <iostream>
using namespace std;

class Foo
{
public:
int i,j;
double y;

virtual int bar() { return 23; }

}s

class Foov2 : public Foo
{
public:

bool tag;

int bar() { return 42; }

b

int main(int argc, charxx argv)
{

Foo A;

Foov2 X;

Foox ptrl = &A;

Foox ptr2 = &X;

// polymorphic calls to bar() for A then X
cout << "ptrl—bar (). =," << ptrl—bar() << endl;
cout << "ptr2—>bar (). =." << ptr2—bar() << endl;

// swap the first 8 bytes of A and first 8 bytes of X
unsigned charx pA = (unsigned charx)&A;
unsigned charx pX = (unsigned charx)&X;
for(int i = 0; i < 8; i++)
swap (pX[i],pA[i]);

// polymorphic calls to bar() for A then X
cout << "ptrl—bar().=," << ptrl—bar() << endl;
cout << "ptr2—>bar (). =," << ptr2—>bar() << endl;

return 0;

}

And here is what happens when we run it:

$ g++ ex4d.cpp

$./a.out

ptrl—bar() = 23
ptr2—bar () = 42
ptrl—bar () = 42
ptr2—>bar () = 23

We have ptrl that points to Foo A, and ptr2 that points to Foov2 X. We call ptrl—>bar() followed by
ptr2—>bar() and see, as we expect, 23 followed by 42. But then we swap the first eight bytes of Foo A and
Foov2 X. Now they point to each other’s vtables. When we call ptrl—>bar() followed by ptr2—>bar() again,
we see that Foo A is now calling the Foov2 bar() implementation and Foov2 X is now calling the Foo bar()
implementation. So by changing the vtable pointer in the instances, we are changing how those polymorphic
calls act. BTW: don’t ever do something like this in a real program!

	Structs in languages like C++ and Java
	A quick note on the reality of the placement of fields

	Methods (aka member functions): part 1, the non-polymophic case
	Inheritance
	Methods (aka member functions): part 2, polymorphic functions!

