
SI 413, Unit 8: Compilation

Daniel S. Roche (roche@usna.edu)

Fall 2023

This unit focuses on the last stages of compilation, namely turning an AST into executable machine code. As
we will see, modern compilers almost never go directly from a program’s AST to a specific machine code
like ARM or x86; rather, they translate to a compiler-specific intermediate language, which is somewhat
like assembly code, but with important differences. That intermediate language can then be subsequently
optimized and translated to the target CPU’s machine instructions.

This unit mostly focuses on what that intermediate language looks like, how it differs from machine code,
and why it is useful for making later performance optimizations.

We could spend an entire course on this, and indeed there are undergraduate courses that really focus on
this “back-end” of the compiler and the many interesting and brilliant ideas that have gone into developing
compiler optimizations and internal representations. The scope of our discussion will mostly be on the
translation into intermediate representation, with just a “hint” of some optimizations that may happen
afterwards.

1 Intermediate Representations
Modern compilers generally work in many phases of analysis, simplification, and optimization. After each
stage, the code is in some intermediate representation (IR) internal to the compiler.

The initial stage of IR may be an abstract syntax tree (AST). Indeed, in interpreted languages without much
optimization, the AST may be the only IR used.

The bytecode language of various virtual machines, as we just discussed, is another kind of IR. This bytecode
is usually a stack-based language, where one of the main goals is to make the bytecode as small as possible
while still allowing fast low-level execution. These bytecode languages are often closely tied to the features of
the original source code language (e.g., Java bytecode is closely tied to the Java language).

Optimizing compilers nowadays also go through at least one more stage of IR, after the AST, looking closer
to the ultimate goal of machine code while still being independent of the target architecture. The kind of IR
that compilers use has different goals than ASTs or bytecode: it is designed to be easy to optimize in later
steps of the compilation, rather than being targeted towards simplicity or compactness.

We will focus on some properties of an IR which is both language and machine-independent:

• Three-address code (3AC)
• Basic blocks
• Control flow graph (CFG)
• Single static assignment (SSA)

These are the properties shared by some IRs for popular modern compilers, which have the attractive property
of being language-independent and machine-independent. That means that you can produce this IR from
any initial programming language source code, and from this IR you can produce actual machine code for
many different target architectures.

1

mailto:roche@usna.edu

2 LLVM and clang specifics
In our upcoming double lab, we will look at compiling SPL source code to the IR for LLVM, the modern
compiler suite behind clang and clang++. The IR properties we cover here are very similar to those found in
the LLVM IR, so will be relevant to your work in that lab.

If you want to see the LLVM IR in action, there are a few useful clang commands you can use:

• Install needed tools: This should already be installed on the lab machines, but on your own laptop
(Ubuntu VM or WSL) you can run:

• View Clang’s AST of C code: Remember that this part of compilation is really turning an AST into
some IR language representation. If you are curious, you can see the abstract syntax of a C program in
clang by running

• Translate C into LLVM IR: This is probably the most useful way to really learn what LLVM IR
code looks like and how it works. The output will be saved in a .ll file like yourprogram.ll:

• Run LLVM IR directly: There is a handy utility lli which can directly interpret LLVM IR, like

• Translate LLVM IR to assembly: To see what the actual machine assembly code would be for some
LLVM IR, you can use the llc tool, which creates an assembly file with a .s extension like yourprogram.s.

• Turn LLVM IR (or assembly) into an executable: You can just use the clang command to turn
any .c C source code, or .ll LLVM IR program, or .s assembly, into an executable program like a.out:

3 Three-address code
A three-address code, abbreviated 3AC or TAC, is a style of IR in which every instruction follows a similar
format:

destination_addr = source_addr1 operation source_addr2

Some operations in 3AC have fewer than 3 addresses, but usually not more. This is quite similar to many
basic machine instructions like ADD or MUL, but it’s important to emphasize that a 3AC IR is still
machine-independent and will usually be simpler than a full assembly language like x86 or ARM.

Sometimes (confusingly) the instructions of a 3AC are called “quadruples”, because they really consist of
four parts: the operation, the destination address, and the two (or sometimes one) source addresses.

The number of operations is usually relatively small compared to a full programming language. For example,
you wouldn’t probably have a += operator to add and update a variable; instead you would have to use
addition where the destination address matches the first source address.

Like assembly code, 3AC languages don’t usually have any looping or if/else blocks. Instead, you have goto
operations and labels. In the LLVM IR we will use, an unconditional branch looks like

br <labe l >

and in a conditional branch we see the more typical 3AC structure:

br <condition_addr> <labe l1 > <labe l2 >

In the conditional branch, condition_addr is the address of a boolean value. If that value is 1 (i.e., true),
then the code jumps to label1, and otherwise it jumps to label2.

An example is in order! Consider this simple Python code fragment to compute the smallest prime factor p
of an integer n.

p = 2
while p∗p <= n :

i f n % p == 0 :

2

break
p += 1

i f p∗p > n :
p = n

print (p)

Now let’s see how that might translate into 3AC:

p = 2
cond i t i on :

temp = p ∗ p
check = temp <= n
br check loop a f t e r l o o p

loop :
temp = n % p
check = temp == 0
br check a f t e r l o o p update

update :
p = p + 1
br cond i t i on

a f t e r l o o p :
temp = p ∗ p
check = n < temp
br check i f 2 a f t e r i f

i f 2 :
p = n
br a f t e r i f

a f t e r i f :
Note : t h i s i s one p l a u s i b l e way a l i b r a r y c a l l could work ,
assuming some s p e c i a l v a r i a b l e names arg1 , arg2 , e t c .
arg1 = "%d\n"
arg2 = p
c a l l p r i n t f

Notice that it got quite a bit longer - that’s typical, because we have to take something that used to be
on one line like if p∗p > n, and break it into multiple statements. This also involves adding some new
variables which didn’t exist in the original program. In this case, we added new variables temp and check as
temporaries to store some intermediate computations.

4 Basic blocks and (the other) CFGs
A useful property of most IRs is that they make it easier for the compiler to analyze the control flow of the
program. The way this is typically represented is by first breaking the program into a number of basic blocks
- sequential chunks of statements with no branches. In the strictest setting (which the case for LLVM IR that
we will see in lab), each basic block must start with a label and end with some control flow statement like a
branch or a function call.

The example above is almost in basic block form already, except that we need to give a label to the first
block and add an unconditional branch at the end of it:

i n i t i a l :
p = 2
br cond i t i on

cond i t i on :
temp = p ∗ p

3

. . . the r e s t i s the same

Once the program is broken into basic blocks, we can generate the control flow graph (CFG) showing possible
execution paths in the program between the basic blocks. Specifically, each node in the CFG is a basic block,
indicated by its label, and each directed edge represents a possible execution path from the end of that basic
block to another one.

(Note: CFG is now an overloaded term in this class, because it also stands for Context-Free Grammar in the
context of parsing. Hopefully the context (haha) will make the distinction clear.)

Here is the CFG for the prime factor program above:

4

5 SSA
The final aspect of the modern IRs (including the LLVM IR) that we will look at is called static single
assignment, or SSA. This is a restriction in how variable or register names are assigned in the IR which makes
many later compiler optimizations much easier to perform. Interestingly, SSA is very closely related to the
concept of referential transparency that we learned from functional programming.

Here’s the formal definition:

5

A program is in SSA form if every variable in the program is assigned only once.

That is, any name can appear on the left-hand side of an assignment only once in the program. It can appear
many times on the right-hand side (after the assignment!), but only once on the left-hand side. This model is
also called write once, read many.

Let’s recall our running example of the prime factor finding program, in 3AC form:
i n i t i a l :

p = 2
br cond i t i on

cond i t i on :
temp = p ∗ p
check = temp <= n
br check loop a f t e r l o o p

loop :
temp = n % p
check = temp == 0
br check a f t e r l o o p update

update :
p = p + 1
br cond i t i on

a f t e r l o o p :
temp = p ∗ p
check = n < temp
br check i f 2 a f t e r i f

i f 2 :
p = n
br a f t e r i f

a f t e r i f :
Note : t h i s i s one p l a u s i b l e way a l i b r a r y c a l l could work ,
assuming some s p e c i a l v a r i a b l e names arg1 , arg2 , e t c .
arg1 = "%d\n"
arg2 = p
c a l l p r i n t f

This is currently not in SSA form, because the variables p, temp, and check are reassigned in a few places.

The usual fix is to replace each reassignment with a new variable name, so that they never get reused and we
have good ol SSA form back again. We’ll replace each assignment of p with p1, p2, etc., and change each
subsequent usage of temp and check to t1, t2, etc.:
i n i t i a l :

p1 = 2
br cond i t i on

cond i t i on :
t1 = p ∗ p ## PROBLEM
t2 = t1 <= n
br t2 loop a f t e r l o o p

loop :
t3 = n % p ## PROBLEM
t4 = temp == 0
br t4 a f t e r l o o p update

update :
p2 = p + 1 ## PROBLEM
br cond i t i on

a f t e r l o o p :

6

t5 = p ∗ p ## PROBLEM
t6 = n < t5
br t6 i f 2 a f t e r i f

i f 2 :
p3 = n
br a f t e r i f

a f t e r i f :
arg1 = "%d\n"
arg2 = p ## PROBLEM
c a l l p r i n t f

Great! This now follows the SSA form wherein each variable name is assigned only once, except there are
some problems very subtly identified in the code above. Take a second to see if you can figure out what the
trouble is here.

The problem is, now that we’ve changed all the reassignments of the original variable p to p1, p2, and p3,
how do we know what each usage of p refers to on the right-hand side? Take for example the first problem:
t1 = p ∗ p

You might be tempted to say that p here should be p1, from the initial block. And sure, that’s what p will
be the first time around. But the next time the condition block is executed, it’s not coming from the initial
block but rather from the update block, so at that point p should be p2.

In other words, the value p in this line could be coming either from p1 or p2, depending on where the program
actually is in its execution. This was not a problem with the temp and check variables that we replaced with
t1, t2, and so on, because their uses were within the same basic block where the variable was set, so there
wasn’t any question.

But p is essentially acting as a conduit for communication between the basic blocks, being set in one block
and accessed in another.

Now, there are two basic ways to solve this. The “easy way” is to use memory: for any variable like p which
has some ambiguous uses, we simply store p into memory (on the stack), and load its value from memory
each time it is used. Then we only need to save the address of p within the variables of the program, and
even though p may be changing repeatedly, that address never changes, so the rules of SSA are not violated.
In fact, this is the approach we will take in our LLVM IR lab.

But using memory this way is very costly in terms of computing time. Each load or store from RAM (or
even cache) is hundreds or thousands of times slower than reading from a CPU register. So we would really
like to keep these values as variables in our 3AC code, if possible, to allow the later stages of compilation to
potentially store them in CPU registers and make the program as fast as possible.

The solution to this, the “hard way”, is to use what is called a phi function, written usually with the actual
Greek letter ϕ. A phi function is used exactly in cases where the value of a variable in some basic block of
the program could come from two or more different assignments, depending on the control flow at run-time.
It just means adding one more assignment to the result of the ϕ function, and the arguments to the phi
function are the different possible variables whose value we want to take, depending on which variable’s basic
block was most recently executed.

I know - that description of the phi function seems convoluted. That’s what makes this the “hard way”! But
it’s how actual compilers work, and it’s not too hard to understand once we see some examples. For the case
of the assignment t1 = p ∗ p in our running example, we would replace this with
p4 = phi (p1 , p2) # ge t s p1 or p2 depending on c o n t r o l f low
t1 = p4 ∗ p4 # Now we can use p4 mul t ip l e t imes in SSA form

Applying this idea throughout the program yields this complete description of our prime factor finding code,
in proper SSA form:

7

i n i t i a l :
p1 = 2
br cond i t i on

cond i t i on :
p4 = phi (p1 , p2)
t1 = p4 ∗ p4
t2 = t1 <= n
br t2 loop a f t e r l o o p

loop :
t3 = n % p4
t4 = t3 == 0
br t4 a f t e r l o o p update

update :
p2 = p4 + 1
br cond i t i on

a f t e r l o o p :
t5 = p4 ∗ p4
t6 = n < t5
br t6 i f 2 a f t e r i f

i f 2 :
p3 = n
br a f t e r i f

a f t e r i f :
p5 = phi (p3 , p4)
arg1 = "%d\n"
arg2 = p5
c a l l p r i n t f

Ultimately, we needed only two phi functions to get this program working. How did we figure this out - when
to use a phi function and when not to, or which version of p to use in each right-hand side?

Generally, this is what you have to do to figure out what any given variable reference should be replaced with
in SSA form:

1. If the variable was set earlier in the same basic block, use that name. For example:

y = 7 ∗ 3
y = y + 1
temp = y < 10

becomes simply

y1 = 7 ∗ 3
y2 = y1 + 1 # y1 i s the most r e c ent defn in the same bas i c b lock
temp = y2 < 10 # y2 i s the most r e c ent defn in the same bas i c b lock

2. If the variable was not set earlier in the same basic block, then trace backwards all possible paths in
the control flow graph, moving backwards until we find the most recent setting of the variable in each
path that could have reached this basic block.

If all paths reach the same basic block where the variable was most recently set, use that variable name.
For example:

one :
x = 5
x = x − 3
br x two three

8

two :
y = x ∗ 10
br three

three :
y = x + 20

becomes
one :

x1 = 5
x2 = x1 − 3 # same bas i c b lock r e f e r e n c e
br x2 two three # same bas i c b lock r e f e r e n c e

two :
y1 = x2 ∗ 10 # x most r e c e n t l y s e t in block one
br three

three :
y2 = x2 + 20 # x most r e c e n t l y s e t in block one

3. Finally, if cases (1) and (2) both fail, then we need to have a phi funciton. Tracing backwards through
the CFG, we find all basic blocks along execution paths where the variable could have been most recently
set. Then we make a new variable and set it to phi of all of those possible variable values. For example,
slightly changing the previous situation:
one :

x = 5
x = x − 3
br x two three

two :
x = x ∗ 10
br three

three :
x = x + 20

becomes
one :

x1 = 5
x2 = x1 − 3 # same bas i c b lock r e f e r e n c e
br x2 two three # same bas i c b lock r e f e r e n c e

two :
x3 = x2 ∗ 10 # x most r e c e n t l y s e t in block one
br three

three :
x4 = phi (x2 , x3) # x could come from block one or two
y2 = x4 + 20 # now we use x4

6 Optimizations
At this point, you should be asking “WHY!!!” Why did we do all this work to convert to the 3AC SSA
Intermediate Representation and draw the CFG?

The main answer is that this representation makes it much easier for the compiler to perform code optimizations
in later steps. Some examples of these optimizations are:

• Constant propagation
• Common subexpression elimination

9

• Dead code elimination
• Code motion
• Function inlining
• Loop unrolling
• Strength reduction
• Register allocation

Depending on timing, we may have a chance to look at a few of these in more detail.

10

	Intermediate Representations
	LLVM and clang specifics
	Three-address code
	Basic blocks and (the other) CFGs
	SSA
	Optimizations

