
SI 413: Computers are good at running
instructions. Not at reading your mind. – Donald

Knuth

Professor Keith Sullivan

Back-end Structure

Scanner (lexical analysis)

Character stream

Token stream

Parse tree

Abstract syntax tree
with annotations

Front end

Flow graph with pseudo-
instructions in basic blocks

Machine-
dependent

Modified flow graph

(Almost) assembly language

Real assembly language

Parser (syntax analysis)

Semantic analysis

Intermediate
code generation

Machine-independent
code improvement

Target code generation

Machine-specific
code improvement

Back end

Intermediate Forms

▶ Intermediate form (IF) provides the connection between
phases

▶ Classified based on levels:
▶ High level IF based on trees or DAGs
▶ Medium level IF: three address instructions for idealized

machine with unlimited registers
▶ Low level IF resememble assembly

▶ Most compilers use a combination of IFs



3AC or TAC

Typicall of the following form

destination addr = source addr1 operation source addr2

▶ Similar to assembly, but is machine independent

▶ Like assembly, no if/then block or looping

Python example

p = 2
whi le p∗p <= n :

i f n % p == 0 :
break

p += 1

i f p∗p > n :
p = n

p r i n t ( p )

p = 2
c o n d i t i o n :

temp = p ∗ p
check = temp <= n
br check l oop a f t e r l o o p

loop :
temp = n % p
check = temp == 0
br check a f t e r l o o p update

update :
p = p + 1
br c o n d i t i o n

a f t e r l o o p :
temp = p ∗ p
check = n < temp
br check i f 2 a f t e r i f

i f 2 :
p = n
br a f t e r i f

a f t e r i f :
# Note : t h i s i s one p l a u s i b l e way a l i b r a r y
# c a l l cou ld work , assuming some s p e c i a l
# v a r i a b l e names arg1 , arg2 , e t c .
arg1 = ”%d\n”
arg2 = p
c a l l p r i n t f

Stack Based IF

▶ Stack based languages when brevity and simplicity are
paramount
▶ Embedded systems and printers
▶ Postscript and PDF

▶ Medium level: pass code from a compiler to an
interpreter/virtual machine
▶ Java bytecode and CLI

▶ Difficult to optimize



Types

▶ Most programming languages have a notion of type
▶ Provide:

▶ Implicit context
▶ Limit the set of operations in a semantically valid program
▶ Make code easier to read and understand
▶ Can drive performance optimizations

Define Type

▶ Denotational: a set of values.

▶ Structural: either a built-in type, or composite type

▶ Abstraction: an interface consisting of a set of operations
with well-defined and mutually consistent semantics

Typing

▶ Type checking

▶ Strongly typed: if the language the application of any
operation to an object that is not intended to support the
operation

▶ Statically typed: type information is known at compile time

▶ Dynamically typed: type information is checked at run-time



Classification of Types

▶ Most languages provide common built-in types

▶ Numeric types: typically implementation dependent

▶ Enumerations

▶ Subrange types

▶ Composite types

Type Equivalence

▶ Structural equivalence: content of the two type definitions
▶ Name equivalence: lexical occurrence of type definitions

▶ Strict name equivalence: aliased types are distinct
▶ Loose name equivalence: aliased types are equivalent

Type Casts

Converting type casts:

1. Types are structurally equivalent, but the language uses name
equivalance

2. Types have different sets of values, but the intersecting ones
are represented the same way

3. Types have different low-level representation but we can
define some sort of correspondence between them

Nonconverting type casts: a change of type that doesn’t alter the
underlying bits



Inverse Square Root

▶ Alias argument to an integer as a way to approximate log2 x

▶ Use this approximation to compute an approximation of
log2

1√
x
= −1

2 log2 x

▶ Alias back to float to compute an approximation of base-2
exponential

▶ Refine approximation with a single iteration of Newton’s
method

Nonconverting type example

f l o a t Q r sq r t ( f l o a t number )
{

long i ;
f l o a t x2 , y ;
const f l o a t t h r e e h a l f s = 1 .5F ;

x2 = number ∗ 0 .5F ;
y = number ;
// e v i l f l o a t i n g po i n t b i t l e v e l hack ing
i = ∗ ( long ∗ ) &y ;

i = 0 x5 f3759d f − ( i >> 1 ) ; // what the fuck ?

y = ∗ ( f l o a t ∗ ) &i ;

// 1 s t i t e r a t i o n
y = y ∗ ( t h r e e h a l f s − ( x2 ∗ y ∗ y ) ) ;

return y ;
}

Heron’s Formula Example



Code Generation

Abstract syntax tree
with annotations

Front end

Scanner (lexical analysis)

Character stream

Token stream

Parse tree

Parser (syntax analysis)

Semantic analysis

Back end

Syntax tree with
additional annotations

Assembly language

Naive register allocation

Target code generation

Basic Blocks and CFG

▶ Most IRs make it easier to analyze the control flow
▶ Basic blocks: sequential chunks of statements without

branches
▶ Start with a label
▶ End with a control flow statement

▶ Control flow graph: possible execution paths between basic
blocks

Example

i n i t i a l :
p = 2
br c o n d i t i o n

c o n d i t i o n :
temp = p ∗ p
check = temp <= n
br check l oop a f t e r l o o p

loop :
temp = n % p
check = temp == 0
br check a f t e r l o o p update

update :
p = p + 1
br c o n d i t i o n

a f t e r l o o p :
temp = p ∗ p
check = n < temp
br check i f 2 a f t e r i f

i f 2 :
p = n
br a f t e r i f

a f t e r i f :
# Note : t h i s i s one p l a u s i b l e way a l i b r a r y
# c a l l cou ld work , assuming some s p e c i a l
# v a r i a b l e names arg1 , arg2 , e t c .
arg1 = ”%d\n”
arg2 = p
c a l l p r i n t f



Static Single Assignment

▶ Formal definition: A program in in SSA form is every variable
in the program is assigned only once.
▶ Any name can appear on the left hand side only once
▶ Write once, read many

▶ Restriction on how IF assigns variable names and/or register
names

▶ Makes later compiler optimizations easier

▶ Recall: referential transparency

SSA example

i n i t i a l :
p = 2
br c o n d i t i o n

c o n d i t i o n :
temp = p ∗ p
check = temp <= n
br check l oop a f t e r l o o p

loop :
temp = n % p
check = temp == 0
br check a f t e r l o o p update

update :
p = p + 1
br c o n d i t i o n

a f t e r l o o p :
temp = p ∗ p
check = n < temp
br check i f 2 a f t e r i f

i f 2 :
p = n
br a f t e r i f

a f t e r i f :
a rg1 = ”%d\n”
arg2 = p
c a l l p r i n t f

Typical Correction

i n i t i a l :
p1 = 2
br c o n d i t i o n

c o n d i t i o n :
t1 = p ∗ p
t2 = t1 <= n
br check l oop a f t e r l o o p

loop :
t3 = n % p
t4 = temp == 0
br t4 a f t e r l o o p update

update :
p2 = p + 1
br c o n d i t i o n

a f t e r l o o p :
t5 = p ∗ p
t6 = n < t5
br t6 i f 2 a f t e r i f

i f 2 :
p3 = n
br a f t e r i f

a f t e r i f :
a rg1 = ”%d\n”
arg2 = p
c a l l p r i n t f



Actual Solutions

▶ Use memory: store address on the stack
▶ Slow compared to CPU registers

▶ ϕ-function: used to determine where value in a basic block
came from based on CFG

p4 = ph i ( p1 , p2 )
t1 = p4 ∗ p4 # prope r SSA form

ϕ-function Example

i n i t i a l :
p1 = 2
br c o n d i t i o n

c o n d i t i o n :
p4 = ph i ( p1 , p2 )
t1 = p4 ∗ p4
t2 = t1 <= n
br t2 l oop a f t e r l o o p

loop :
t3 = n % p4
t4 = t3 == 0
br t4 a f t e r l o o p update

update :
p2 = p4 + 1
br c o n d i t i o n

a f t e r l o o p :
t5 = p4 ∗ p4
t6 = n < t5
br t6 i f 2 a f t e r i f

i f 2 :
p3 = n
br a f t e r i f

a f t e r i f :
p5 = ph i ( p3 , p4 )
arg1 = ”%d\n”
arg2 = p5
c a l l p r i n t f

How to determine ϕ

If the variable was set earlier in same basic block, just use that
value

y = 7 ∗ 3
y = y + 1
temp = y < 10

becomes

y1 = 7 ∗ 3
y2 = y1 + 1
temp = y2 < 10



How to determine ϕ

Trace backwards in CFG. If all paths reach the same basic block,
use that variable name

one :
x = 5
x = x − 3
br x two t h r e e

two :
y = x ∗ 10
br t h r e e

t h r e e :
y = x + 20

one :
x1 = 5
x2 = x1 − 3
br x2 two t h r e e

two :
y1 = x2 ∗ 10
br t h r e e

t h r e e :
y2 = x2 + 20

How to determine ϕ

If both previous cases fail, need a ϕ-function

one :
x = 5
x = x − 3
br x two t h r e e

two :
x = x ∗ 10
br t h r e e

t h r e e :
x = x + 20

one :
x1 = 5
x2 = x1 − 3
br x2 two t h r e e

two :
x3 = x2 ∗ 10
br t h r e e

t h r e e :
x4 = ph i ( x2 , x3 )
y2 = x4 + 20

Why do all this?

Easier to perform code optimizations

▶ Constant propagation

▶ Common subexpression elimination

▶ Dead code elimination

▶ Function inlining

▶ Loop unrolling

▶ Register allocation



LLVM

▶ A collection of modular and
reusable compiler toolchain
tech (e.g., assemblers,
compilers, debuggers)

▶ Started as a research project
in 2000

▶ Unique internal
representation

▶ Clang

Compiler Design

Successes and Issues

Successess

▶ Java and .NET

▶ Translate input source into C

▶ GCC

Issues

▶ Monolithic



LLVM IR

▶ Platform independent assembly language with infinite registers

▶ Strongly typed reduced instruction set computing (RISC)
instruction set

▶ First class

▶ Contents of LLVM IR assembly file is called a module

▶ Modules contain zero or more top-level entities such as global
variables and functions

▶ Function declaration contains zero basic blocks; function
definitions contains one or more basic blocks

Identifiers

▶ Global identifiers (functions, global variables) begin with @

▶ Local identifiers (register names, types) begin with %

▶ Why prefixes? No name clash with reserved words

▶ Local identifiers scoped to each function

Example: multiply %X by 8. The easy way:

%r e s u l t = mul i32 %X, 8

and the hard way

%0 = add i32 %X, %X ; y i e l d s i 3 2 :%0
%1 = add i32 %0, %0 ; y i e l d s i 3 2 :%1
%r e s u l t = add i32 %1, %1

LLVM IR Example

i n t f ( i n t a , i n t b ) {
return a + 2∗b ;

}

i n t main ( ) {
return f (10 , 2 0 ) ;

}

d e f i n e i 3 2 @f ( i 3 2 %a , i 3 2 %b ) {
; < l a b e l >:0

%1 = mul i 3 2 2 , %b
%2 = add i 32 %a , %1
r e t i 3 2 %2

}

d e f i n e i 3 2 @main ( ) {
; < l a b e l >:0

%1 = c a l l i 3 2 @f ( i 3 2 10 , i 3 2 20)
r e t i 3 2 %1

}



LLVM IR Example

; G l oba l v a r i a b l e i n i t i a l i z e d to the 32− b i t i n t e g e r v a l u e 21 .
@foo = g l o b a l i 32 21

; f r e t u r n s 42 i f the c o n d i t i o n cond i s t rue , and 0 o t h e r w i s e .
de f i n e i 32 @f ( i 1 %cond ) {

e n t r y :
br i 1 %cond , l a b e l %block 1 , l a b e l %b l o c k 2

b l o c k 1 :
%tmp = l oad i32 , i 32 ∗ @foo
%r e s u l t = mul i 32 %tmp , 2
r e t i 32 %r e s u l t

b l o c k 2 :
r e t i 32 0

}

SSA

▶ LLVM IR is SSA

▶ Recall ϕ function

de f i n e i 32 @f ( i 32 %a ) {
; < l a b e l >:0

sw i tch i 32 %a , l a b e l %de f a u l t [
i 32 42 , l a b e l %case1

]

ca se1 :
%x . 1 = mul i 32 %a , 2
br l a b e l %r e t

d e f a u l t :
%x . 2 = mul i 32 %a , 3
br l a b e l %r e t

r e t :
%x . 0 = ph i i 32 [ %x.2 , %d e f a u l t ] , [ %x.1 , %case1 ]
r e t i 32 %x .0

}

LLVM Implementation



Attribute Grammars

Attribute Grammars

Attribute Grammars

▶ Two tasks: determine registers for each subtree at runtime,
and generate code

▶ Simple stack to allocate registers

Example: (a+ b) ∗ (c − (d/e))

r1 = a push a
r2 = b push b
r1 = r1 + r2 add
r2 = c push c
r3 = d push d
r4 = e push e
r3 = r3 / r4 divide
r2 = r2 - r3 subtract
r1 = r1 * r2 multiply



Target Code

Address Space

▶ Assemblers, linkers, and loaders typically operate on a pair of
related file formats
▶ relocatable object code
▶ executable object code

▶ Relocatable object code is acceptable as input to a linker
▶ multiple files in this format can be combined to create an

executable program

▶ Executable object code is acceptable as input to a loader:
▶ it can be brought into memory and run

Relocatable Objects

▶ Import table
▶ Instructions that refer to named locations whose addresses are

unknown
▶ Assume addresses will be in other files

▶ Relocation table
▶ Instructions in the current file but are offset at runtime

▶ Export table
▶ Lists names and addresses in current file that may be referred

by other files

Contrast with executable objects: contains no references to
external symbols



Memory Layout

▶ Unitialized data: allocated at
run-time or on demand. Usually
zero-filled for repeatability and
security

▶ Stack and heap: small initial
allocation, OS then expands as
needed

▶ Files: library that allows mapping
of files into memory

▶ Dynamic libraries: shared code and
linkage information 0x08048000

0x00110000

0xc0000000

Heap

Stack

Kernel address space
(inaccessible to
user programs)

Shared libraries and
memory-mapped files

Shared libraries and
memory-mapped files

Read-only code
(“text”) and constants

Uninitialized data

Initialized data

Assembler

▶ The compiler generates assembly code
▶ An assembler converts assembly to machine code (object file)

▶ Replace opcodes and operands with machine language
encodings

▶ Replace symbolic names with actual addresses

Assembler

Source program

Object code

Internal data structures

Assembler source Assembler sourceCompiler

Assembler front end

Assembler back end



Emitting Instructions

▶ Basic task: translate symbolic representations to binary form
▶ Most assemblers make minor modifications to their input

▶ as: GNU assembler
▶ SPI’s assembler for MIPS

▶ Directives: instructions to assembler to take some action or
change a setting
▶ Assemble code and data into specified sections
▶ Reserve space in memory for uninitialized variables
▶ Control the appearance of listings
▶ Initialize memory
▶ Assemble conditional blocks
▶ Define global variables
▶ Specify libraries from which the assembler can obtain macros
▶ Examine symbolic debugging information

Directives

▶ Segment switching
▶ .text: place instructions in code segment
▶ .date: place instructions in initialized data segment
▶ .space n: reserve n bytes in uninitialized data segment

▶ Data generation
▶ .byte, .hword, .word, .float and .double place

successive instructions in the current segment
▶ .ascii places a single character in consecutive bytes

▶ Symbol identification
▶ .globl name indicates name should be entered into the

export table

▶ Alignment
▶ .align n aligns subsequent output at an address evenly

divisible by 2n

Assigning Address

▶ Assemblers work in multiple passes
▶ Convert text to IR
▶ Identify internal and external symbols, assigning address to all

internal ones
▶ Produce object code

▶ Within the object file
▶ Any symbol in .globl goes into the table of exported symbols
▶ Any symbol referred to, but not defined, must appear in table

of imported symbols
▶ Any symbol that depends on its placement in the current file

goes in to the relocation table



Linking

▶ Separate compilation: fragments of the program can be
compiled and assembled separately (compilation unit)

▶ The linker glues these fragments together
▶ Each compilation unit must be relocatable

▶ Static linking: done prior to program execution

▶ Dynamic linking: done during program execution
▶ Two tasks: relocation and external symbol resolution

▶ Virtual memory from the OS

Linking Example

Relocatable object files

9
0

0
2

3
0

0
3

0
0

0

1
8

0
0

8
0

0
5

0
0 3
0

0

Executable object file

Data

X:

Y:

Code

 …

 r1 := &M (2300)

 call M (2300)

 …

 r1 := &L (1800)

 r2 := Y (3900)

 r3 := X (3300)

L:

M:1
0

0
0

4
0

0
1

5
0

0
1

6
0

0

Imports
 X

Data

Y:

Exports
 M

B

Relocation

Code

 …

 r1 := &L (1000)

 r2 := Y (400)

 r3 := X

L:

M:

8
0

0
3

0
0

5
0

0

A

Imports
 M

 M

Relocation

Exports
 X

Data

X:

Code

 …

 r1 := &M

 call M

Type Checking

▶ Within a compilation unit, semantic rules apply

▶ Across compilation units, header files are used
▶ Consider:

▶ Module M’s header makes promises re API
▶ Compiler enforces those promises when compiling M
▶ Problems?

▶ Create symbol to characterize M’s header
▶ Checksum
▶ C and C++ ???

▶ Name mangling


