
Programming Languages: The first law of
computer science: Every problem is solved by yet

another indirection

Professor Keith Sullivan

Parameter Passing Mode

▶ Passing information from the call site to the function.

▶ Parameter Passing Mode tells us how the information is
communicated from the call site to the function.

Example

1 i n t f o o 1 g l o b a l ;
2 vo i d foo1 () { f o o 1 g l o b a l = f o o 1 g l o b a l ∗ 2 ; }
3
4 i n t foo2 (i n t i n) { r e t u r n i n ∗ 2 ; }
5
6 vo i d foo3 (i n t& i nou t) { i n o u t ∗= 2;}
7
8 i n t main () {
9 i n t x=1, y=2, z=3;
10
11 f o o 1 g l o b a l = x ;
12 foo1 () ;
13 cout << f o o 1 g l o b a l << end l ;
14
15 cout << foo2 (y) << end l ;
16
17 foo3 (z) ;
18 cout << z << end l ;

Pass by Value

▶ Function receives a copies of the arguments

▶ Function cannot modify the originals, and copies go out of
scope when function returns

▶ Arguments are one-way communication from call site to
function
▶ Can the function communicate back?

▶ C/C++ use pass by value by default

▶ Java uses it for primitive types

Pass by Reference

▶ The formal parameters of the function become aliases for the
arguments

▶ Function arguments now represent two-way communication

▶ Can cause confusion and introduce difficulties for the compiler:

1 i n t a , b , ∗p , ∗q ;
2
3 a = ∗p ;
4 ∗q = 3 ;
5 b = ∗p ;

Variations

▶ Pass by Value/Result
The initial value is passed as a copy, and the final value on
return is copied back to the actual parameter. Behaves like
pass by reference unless the actual parameter is accessed
during the function call.

i n t x = 1 ;

vo i d f (i n t & a)
{

a = 2 ;
x = 0 ;

}

main ()
{

f (x) ;
cout << x << end l ;

}

Variations

▶ Pass by Sharing
Actual and formal parameters both reference some shared
data. But they are not aliases; functions can change the object
that is references by cannot set which object is referenced.

Pass by Sharing

c l a s s Share {
s t a t i c c l a s s Smal l {

p u b l i c i n t x ;
p u b l i c Smal l (i n t thex) { x = thex ; }

}

p u b l i c s t a t i c vo i d t e s t (Smal l s) {
s . x = 10 ;
s = new Smal l (2 0) ;

}

p u b l i c s t a t i c vo i d main (S t r i n g [] a r g s) {
Smal l ma insma l l = new Smal l (5) ;
t e s t (ma insma l l) ;
System . out . p r i n t l n (ma insma l l . x) ;

}
}

Argument evaluation

Question: When are function arguments evaluated?

There are three common options:

▶ Applicative order: Arguments are evaluated just before the
function body is executed.
This is what we get in C, C++, Java, and even SPL.

▶ Call by name: Arguments are evaluated every time they are
used.
(If they aren’t used, they aren’t evaluated!)

Lazy Evaluation

(A.K.A. normal order evaluation)

Combines the best of both worlds:

▶ Arguments are not evaluated until they are used.

▶ Arguments are only evaluated at most once.

(Related idea to memoization.)

Why not use lazy evaluation everywhere? Why doesn’t C++ use
it?

What about functional languages?

Method calls in objects

What does a call like obj .foo(x) do in an OOP language
such as C++ or Java?

foo must be a method defined in the class of obj.
The method also has access to what object it was called on
(called this in C++ and Java).

This is syntactic sugar for having a globally-defined method foo,
with an extra argument for “ this”.
So we can think of obj .foo(x) as foo(obj ,x).

Overloading

Function overloading: one name, many functions.
Which function to call is determined by the types of the arguments.

class A { void print () { cout << "in␣A" << endl; } };

class B { void print () { cout << "in␣B" << endl; } };

void foo(int a) { cout << a << "␣is␣an␣int\n"; }

void foo(double a) { cout << a << "␣is␣a␣double\n"; }

int main() {

cout << (5 << 3) << endl;

A x;

B y;

x.print ();

y.print ();

foo (5);

foo (5.0);

}

How does overloading occur in this C++ example?

Quirk of C++

s t r u c t Po in t {
i n t x ;
i n t y ;

} ;

Po in t o p e r a t o r+ (Po in t a , Po in t b) {
Po in t r e s u l t ;
r e s u l t . x = a . x + b . x ;
r e s u l t . y = a . y + b . y ;
r e t u r n r e s u l t ;

}

i n t main () {
Po in t p1 , p2 ;
/∗ . . . ∗/
Po in t p3 = p1 + p2 ;
i n t x = 1 + 2 ;

}

Polymorphism

Subtype polymorphism is like overloading, but the called function
depends on the object’s actual type, not its declared type!

Each object stores a virtual methods table (vtable) containing the
address of every virtual function.

This is inspected at run-time when a call is made.

Polymorphism Example

c l a s s Base { v i r t u a l v o i d aha () = 0 ; } ;

c l a s s A : p u b l i c Base {
vo i d aha () { cout << ” I ’m an A!” << end l ; }

} ;

c l a s s B : p u b l i c Base {
vo i d aha () { cout << ” I ’m a B!” << end l ; }

}

i n t main (i n t a rgc) {
Base∗ x ;
i f (a rgc == 1)

x = new A;
e l s e

x = new B;
x . aha () ; // Which one w i l l i t c a l l ?

}

Macros

i n t y = 10 ;

#d e f i n e X (y + 2)

vo i d foo (i n t y) {
cout << X << end l ;

}

i n t main () {
cout << X << end l ;
y = y ∗ 20 ;
cout << X << end l ;
f oo (5 0) ;

}

Constant Macros

#de f i n e PI 3 .14159
#d e f i n e TWOPI PI + PI

doub l e c i rcum (doub le r a d i u s)
{

r e t u r n TWOPI ∗ r a d i u s ;
}

Function Macros

#de f i n e CIRCUM (r a d i u s) 2∗3.14159∗ r a d i u s

. . .
cout << CIRCUM(1 . 5) + CIRCUM(2 . 5) << end l ;
. . .

Why the extra parentheses here?

#de f i n e DIVIDES (a , n) (! ((n) % (a)))

Macros

▶ The advantage is SPEED - pre-compilation!

▶ Notice: no types, syntactic checks, etc.
— lots of potential for nastiness!

▶ The literal text of the arguments is pasted into the function
wherever the parameters appear.
This is called call by name

▶ The inline and constexpr keywords in C++ are compiler
suggestions that may offer a compromise.

▶ Scheme has a very sophisticated macro definition mechanism
— allows one to define “special forms”.

