
Programming Languages: If you’re not tired,
you’re not doing it right

Professor Keith Sullivan

Basic Terminology

▶ Name: A character string to represent something

▶ Binding: An attachment of a value to a name

▶ Scope: The part of code where a binding is active

▶ Referencing Environment: The set of active bindings at the
point of an expression

▶ Allocation: Setting aside space for an object

▶ Lifetime: The time when an object is in memory

Naming Issues: Example 1

We need to know what thing a name refers to in our programs.

Consider, in Perl:

$x=1;
sub f oo ( ) { $x = 5 ; }
sub bar ( ) { l o c a l $x = 2 ;

foo ( ) ;
p r i n t $x , ”\n” ; }

bar ( ) ;

What gets printed for x?



Naming Issues: Example 2

We need to know what thing a name refers to in our programs.

Consider, in Scheme:

( d e f i n e x 1)
( d e f i n e ( foo x )

( lambda ( ) ( d i s p l a y x ) ) )
( ( foo 5 ) )
( d i s p l a y x )

What gets printed for x?

Naming Issues: Example 3

We need to know what thing a name refers to in our programs.

Consider, in C++:

char∗ f oo ( ) {
char s [ 2 0 ] ;
c i n >> s ;
return s ;

}

void bar ( char∗ x ) { cout << x << end l ; }

i n t main ( ) { bar ( foo ( ) ) ; return 1 ; }

What gets printed for x?

When to bind?

▶ Language design: language semantics
▶ Language implementation

▶ Precision, coupling of I/O

▶ Program writing

▶ Compile time

▶ Linking

▶ Loading

▶ Run time

Earlier binding times have greater efficiency, while later binding
times have greater flexibility.



Memory Layout

Pointers

▶ Stack frame: a call to a function (and associated information)
that has not yet returned

▶ Stack pointer: points to the top of the stack
▶ Frame pointer: points to the top of the frame
▶ Program counter: address which points to the next instruction

Allocation

Defined by the compiler/interpreter writer, not the language
specification.

▶ Static Allocation
Allocation fixed at compile time

▶ Stack Allocation
Follows function calls

▶ Heap Allocation
Done at run time as objects created and destroyed



Static Allocation

▶ Objects are given an absolute memory address at compile time

▶ Our program can then access them really quickly

▶ Memory size does not change

▶ No memory re-usability (objects stay in memory until program
terminates)

Examples:

▶ Global variables

▶ Literals (e.g., numbers, strings)

▶ Everything in Fortran77

What about recursion?

Stack Allocation

Run-time stack is used for function calls.
Contiguous block of memory
No decisions about where to allocate

Function D

Function C

Function B

Function A

Arguments

Temporaries

Local Variables

Return Address

fp

Stack example

What does the stack look like for this C code?

i n t g ( i n t x ) { return x∗x ; }

i n t f ( i n t y ) {
i n t x = 3 + g ( y ) ;
return x ;

}

i n t main ( ) {
i n t n = 5 ;
f ( n ) ;

}



Heap Allocation

▶ A heap is a pile of memory that can used as needed for
runtime memory allocation.

▶ No specific limit on memory size, randomly allocated

▶ Manual allocation and de-allocation

▶ Slowest method of allocation
▶ How to manage?

▶ First fit
▶ Best Fit
▶ Worst Fit

Fragmentation is a problem!

Garbage Collection

▶ De-allocation of objects
▶ Explicitly done by user (C, C++, Rust)
▶ Done by language when object is no longer reachable

▶ Garbage collection identifies and reclaims unreachable objects
▶ Manual de-allocation errors are common and costly

▶ Dangling reference
▶ Memory leaking

Scoping

Scoping

▶ Single Global Scope
Just one symbol table

▶ Dynamic Scope
Stacks of scopes; depends on run-time behavior

▶ Lexical Scope
Scope is based on the syntaxical (lexical) structure of the code



What is a scope?

Certain language structures create a new scope. For example:

i n t temp = 5 ;

// So r t s a two−e l ement a r r a y .
void twoso r t ( i n t A [ ] ) {

i f (A [ 0 ] > A [ 1 ] ) {
i n t temp = A [ 0 ] ;
A [ 0 ] = A [ 1 ] ;
A [ 1 ] = temp ;

}
}

i n t main ( ) {
i n t a r r [ ] = {2 , 1} ;
two so r t ( a r r ) ;
cout << temp ;

}

Nested Scopes

In C++, nested scopes are made using curly braces ({ and }).
The scope resolution operator :: allows jumping between scopes
manually.

In most languages, function bodies are a nested scope.
Often, control structure blocks are also (e.g. for, if , etc.)

Lexical scoping follows the nesting of scopes in the actual source
code (as it is parsed).
Dynamic scoping follows the nesting of scopes as the program is
executed.

Declaration Order

In many languages, variables must be declared before they are
used. (Otherwise, the first use constitutes a declaration.)

In C/C++, the scope of a name starts at its declaration and goes
to the end of the scope. Every name must be declared before its
first use, because names are resolved as they are encountered.

C++ and Java make an exception for names in class scope.
Scheme doesn’t resolve names until they are evaluated.



Declaration Order and Mutual Recursion

Consider the following familiar code:

void exp ( ) { atom ( ) ; e x p t a i l ( ) ; }

void atom ( ) {
switch ( peek ( ) ) {

case LP : match (LP ) ; exp ( ) ; match (RP ) ;
break ;
. . .

}
}

Mutual recursion in C/C++ requires forward declarations,
i.e., function prototypes.

These wouldn’t be needed within a class definition or in Scheme.
C# and Pascal solve the problem in a different way. . .

Dynamic vs. Lexical Scope

Dynamic Scope

▶ Bindings determined by most recent declaration (at run time)

▶ The same name can refer to many different bindings!

▶ Examples:

Lexical Scope

▶ Bindings determined from lexical structure at compile-time

▶ The same name always refers to the same binding.

▶ More common in “mature” languages

▶ Examples:

Dynamic vs. Lexical Example

1 n : i n t e g e r

3 p rocedu r e f i r s t ( )
4 n := 1

6 p rocedu r e second ( )
7 n : i n t e g e r
8 f i r s t ( )

10 n := 2
11 i f r e a d i n t e g e r ( ) > 0
12 second ( )
13 e l s e
14 f i r s t ( )
15 w r i t e i n t e g e r ( n )

How does the behavior differ between a dynamic or lexically scoped
language?



Problem with Dynamic Scoping

1 max score : i n t e g e r

3 f u n c t i o n s c a l e d s c o r e ( r aw s co r e : i n t e g e r )
4 return r aw s co r e / max score ∗ 100

6 f u n c t i o n foo ( )
7 max score : r e a l := 0
8 f o r e a c h s t uden t i n c l a s s
9 s t uden t . p e r c en t :=

10 s c a l e d s c o r e ( s t uden t . p o i n t s )
11 i f s t uden t . p e r c en t > max score :
12 max score := s tuden t . p e r c en t

Implementing Dynamic Scoping

A Central Reference Table is used to implement dynamic scope.

This global object contains:

▶ A mapping of names to stacks of values
Declaring a new binding pushes onto the stack; exiting that
binding’s scope pops off the top of the stack.

▶ A stack of sets of names. Each set stores the names declared
in some scope (so we know what bindings to pop).

Example

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}



Central Reference Table Example

Names in Scope x i g f

{x,i,g,f} 0 -1 z → i p → . . .

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

Central Reference Table Example

Names in Scope x i g f p ret

{x,i,g,f} 0 -1 z → i p → . . . y → 0 (unset)
{p, ret}

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

Central Reference Table Example

Names in Scope x i g f p ret

{x,i,g,f} 0 -1 z → i p → . . . y → 0 (unset)
{p, ret, i} 0

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}



Central Reference Table Example

Names in Scope x i g f p ret

{x,i,g,f} 1 -1 z → i p → . . . y → 0 (unset)
{p, ret, i} 3 z → i (unset)
{p, ret}

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

Central Reference Table Example

Names in Scope x i g f p ret z

{x,i,g,f} 1 -1 z → i p → . . . y → 0 (unset) 0
{p, ret, i} 3 z → i (unset)
{p, ret, i} 1 (unset)
{z, ret}

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

Central Reference Table Example

Names in Scope x i g f p ret z

{x,i,g,f} 1 -1 z → i p → . . . y → 0 (unset) 0
{p, ret, i} 3 z → i (unset)
{p, ret, i} 1 1
{z, ret}

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}



Central Reference Table Example

Names in Scope x i g f p ret z

{x,i,g,f} 1 -1 z → i p → . . . y → 0 (unset)
{p, ret, i} 3 z → i 1
{p, ret, i} 1

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

Central Reference Table Example

Names in Scope x i g f p ret z

{x,i,g,f} 1 -1 z → i p → . . . y → 0 1
p, ret, i 3

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

Lexical Scope Tree

Name resolution in lexical scoping follows a scope tree

▶ Every (nested) scope is a node

▶ The root is the global scope

▶ Nodes contain names defined in that scope

▶ To determine active bindings, follow the tree up until you find
the name



Example

{
new x := 0 ;
new i := −1;
new g := lambda z { r e t := i ; } ;
new f := lambda p {

new i := x ;
i f e l s e ( i > 0) { r e t := p@0 ; }
{

x := x + 1 ;
i := 3 ;
r e t := f@g ;

}
} ;
w r i t e f@ ( lambda y { r e t := 0} ) ;

}

The class of functions

▶ Third Class: never treated as a variable

▶ Second Class: Passed as parameters to other functions

▶ First Class: Also returned from a function and assigned a
variable

Implementing Lexical Scope

With lexical scoping, binding rules get more complicated when
functions have more flexibility:

▶ Third Class Functions
“Static links” into function call stack

▶ Second Class Functions
“Dynamic links” into function call stack

▶ Third Class Functions
Must use Frames



Lexical Scope with 1st Class Functions

What happens here?

{
new f := lambda x {

new g := lambda y {
r e t := x ∗ y ;

} ;
} ;

new h:= f@2 ;
w r i t e h@3 ;

}

Frames

A frame is a data structure that represents the referencing
environment of part of a program. It contains:

▶ A link to the parent frame
This corresponds to the enclosing scope

▶ A symbol table

Looking up a name means checking the current frame, then
recursively looking in the parent frame.

Function calls create new frames.

Closures

How are functions represented as values? With a closure

Recall that a closure is a function definition with its referencing
environment. In a frame, we represent this as a pair:

▶ The function definition (parameters and body)

▶ Link to the frame where the function was defined.



Example

new f := lambda x {
r e t := lambda y {

r e t := x + y ;
} ;

;

new g := f@5 ;
w r i t e g@6 ;

Example

new f := lambda x {
r e t := lambda y {

r e t := x + y ;
} ;

;

new g := f@5 ;
w r i t e g@6 ;


