
Syntax & Semantics

Programming Language Specification

Programming languages provide a medium to describe an algorithm so
that a computer can understand it.

But how can we describe a programming language so that a computer
can understand it?

We need to specify both:

Syntax: the rules for how a program can look

Semantics: the meaning of syntactically valid programs

SI 413 (USNA) Unit 4 Fall 2023 1 / 44

Syntax & Semantics

English Syntax vs. Semantics

Consider four English sentences:

Burens mandneout exhastrity churerous handlockies audiverall.

Feels under longingly shooting the darted about.

Colorless green ideas sleep furiously.
(Noam Chomsky)

It’s like all the big stories were stitched together into dead tiny sisters.
(Jeffrey Harrison)

SI 413 (USNA) Unit 4 Fall 2023 2 / 44

Syntax & Semantics

C++ Syntax vs. Semantics

What do the following code fragments mean?

int x;

x = 2^3;

if (x < y < z) {

return y;

}

else return 0;

SI 413 (USNA) Unit 4 Fall 2023 3 / 44

Syntax & Semantics

Syntax feeds semantics!

Consider the following grammar:

exp → exp op exp | NUM
op → + | - | * | /

This correctly defines the syntax of basic arithmetic statements with
numbers. But it is ambiguous and confuses the semantics!

SI 413 (USNA) Unit 4 Fall 2023 4 / 44

Syntax & Semantics

Better syntax specification
Here is an unambiguous syntax for basic arithmetic:

Terminals (i.e., tokens)

OPA = [+-]

OPM = [*/]

NUM = ("-"|)[0-9]+

LP = "("

RP = ")"

STOP = ";"

Valid constructs (i.e., grammar)

S → exp STOP

exp → exp OPA term | term
term → term OPM factor | factor

factor → NUM | LP exp RP

SI 413 (USNA) Unit 4 Fall 2023 5 / 44

Syntax & Semantics

Scanner and Parser Specification

Recall that compilation begins with scanning and parsing .

Scanning turns a raw character stream into a stream of tokens.
Tokens are specified using regular expressions.

Parsing finds larger syntactic constructs and turns a token stream into
a parse tree. Grammar is specified in Extended Backus-Nauer Form.
(EBNF allows the normal constructs plus Kleene +, Kleene *, and
parentheses.)

SI 413 (USNA) Unit 4 Fall 2023 6 / 44

Scanning

Hand-rolled Scanner FA

Here is a finite automaton
for our basic tokens:

SI 413 (USNA) Unit 4 Fall 2023 7 / 44

Scanning

What is a token?

When our FA accepts, we have a valid token.

We return the terminal symbol or “type”.
This usually comes right from the accepting state number.

Some tokens may require additional information, such as
the value of the number, or which operation was seen.

SI 413 (USNA) Unit 4 Fall 2023 8 / 44

Scanning

Code for hand-rolled scanner

The calc-scanner.cpp file implements the FA above using switch

statements. Check it out!

There is also a Bison parser in calc-parser.ypp containing:

Datatype definition for the “extra” information returned with a token

Grammar production rules, using token names as terminals

A main method to parse from standard in

SI 413 (USNA) Unit 4 Fall 2023 9 / 44

Scanning

Extending our syntax

Some questions:

What if we wanted ** to mean exponentiation?

How about allowing comments? Single- or multi-line?

How about strings delimited with "?

What about escape sequences?

Can we allow negative and/or decimal numbers?

SI 413 (USNA) Unit 4 Fall 2023 10 / 44

Scanning

Maximal munch

How does the C++ scanner know that “/*” starts a comment, and is not
a divide and then a multiply operator?

How does it know that “-5” is a single integer literal, and not the
negation operator followed by the number 5?

How does it even know if “51” is two integers or one?

Maximal munch rule: always take the token that matches the most
characters, starting from the current position.

SI 413 (USNA) Unit 4 Fall 2023 11 / 44

Scanning

Looking ahead

The code we referenced uses cin.putback() to return unneeded
characters to the input stream.

But this only works for a single character. In general, we need to use a
buffer. Implementing this requires a circular, dynamically-sized array, and
is a bit tricky.

For example, consider the language with - and --> as valid tokens, but
not --. This requires 2 characters of “look-ahead”.

SI 413 (USNA) Unit 4 Fall 2023 12 / 44

Scanning

Structure of a Scanner

How does a scanner generation tool like flex actually work?

1 An NDFA is generated from each regular expression.
Final states are marked according to which rule is used.

2 These NDFAs are combined into a single NDFA.

3 The big NDFA is converted into a DFA. How are final states marked?

4 The final DFA is minimized for efficiency.
The DFA is usually represented in code with a state-character array .

SI 413 (USNA) Unit 4 Fall 2023 13 / 44

Scanning

Look-ahead in scanners

The “maximal munch” rule says to always return the longest possible
token.

But how can the DFA tell if it has the maximal munch?

Usually, just stop at a transition from accepting to non-accepting state.
This requires one character of look-ahead .

Is this good enough for any set of tokens?

SI 413 (USNA) Unit 4 Fall 2023 14 / 44

Parsing

Parsing

Parsing is the second part of syntax analysis.

We use grammars to specify how tokens can combine.
A parser uses the grammar to construct a parse tree
with tokens at the leaves.

Scanner: Specified with regular expressions, generates a DFA
Parser: Specified with context-free grammar, generates a . . .

SI 413 (USNA) Unit 4 Fall 2023 15 / 44

Parsing

Generalize or Specialize?

Parsing a CFG deterministically is hard:
requires lots of computing time and space.

By (somewhat) restricting the class of CFGs, we can parse much faster.

For a program consisting of n tokens, we want O(n) time,
using a single stack, and not too much look-ahead.

SI 413 (USNA) Unit 4 Fall 2023 16 / 44

Parsing

Parsing Strategies

Top-Down Parsing:

Constructs parse tree starting at the root

“Follow the arrows” — carry production rules forward

Requires predicting which rule to apply for a given nonterminal.

LL: Left-to-right, Leftmost derivation

Bottom-Up Parsing:

Constructs parse tree starting at the leaves

“Go against the flow” — apply reduction rules backwards

Requires

LR: Left-to-right, Rightmost defivation

SI 413 (USNA) Unit 4 Fall 2023 17 / 44

Parsing

Parsing example

Simple grammar

S → T T
T → aa

T → bb

Parse the string aabb, top-down and bottom-up.

SI 413 (USNA) Unit 4 Fall 2023 18 / 44

Parsing

Handling Errors

How do scanning errors occur?
How can we handle them?

How do parsing errors occur?
How can we handle them?

“Real” scanners/parsers also tag everything with filename & line number
to give programmers extra help.

SI 413 (USNA) Unit 4 Fall 2023 19 / 44

LL Parsers

Top-down parsing

1 Initialize the stack with S, the start symbol.;
2 while stack and input are both not empty do
3 if top of stack is a terminal then
4 Match terminal to next token
5 else
6 Pop nonterminal and replace with

r.h.s. from a derivation rule

7 Accept iff stack and input are both empty

Make choice on Step 6 by “peeking” ahead in the token stream.

SI 413 (USNA) Unit 4 Fall 2023 20 / 44

LL Parsers

LL(1) Grammars

A grammar is LL(1) if it can be parsed top-down with just 1 token’s worth
of look-ahead.

Example grammar

S → T T
T → ab

T → aa

Is this grammar LL(1)?

SI 413 (USNA) Unit 4 Fall 2023 21 / 44

LL Parsers

Common prefixes

The common prefix in the previous grammar causes a problem.

In this case, we can “factor out” the prefix:

LL(1) Grammar

S → T T
T → a X
X → b

X → a

SI 413 (USNA) Unit 4 Fall 2023 22 / 44

LL Parsers

Left recursion

The other enemy of LL(1) is left recursion:

S → exp
exp → exp + NUM

exp → NUM

Why isn’t this LL(1)?

How could we “fix” it?

SI 413 (USNA) Unit 4 Fall 2023 23 / 44

LL Parsers

Tail rules to get LL

To make LL grammars, we usually end up adding extra “tail rules” for
list-like non-terminals.

For instance, the previous grammar can be rewritten as

S → exp
exp → NUM exptail

exptail → ϵ | + NUM exptail

This is now LL(1).

(Remember that ϵ is the empty string in this class.)

SI 413 (USNA) Unit 4 Fall 2023 24 / 44

LL Parsers

Recall: Calculator language scanner

Token name Regular expression

NUM (-|)[0-9]+

OPA [+-]

OPM [*/]

LP "("

RP ")"

STOP ;

SI 413 (USNA) Unit 4 Fall 2023 25 / 44

LL Parsers

LL(1) grammar for calculator language

S → exp STOP

exp → term exptail
exptail → ϵ | OPA term exptail

term → factor termtail
termtail → ϵ | OPM factor termtail

factor → NUM | LP exp RP

How do we know this is LL(1)?

SI 413 (USNA) Unit 4 Fall 2023 26 / 44

LL Parsers

Recursive Descent Parsers

A recursive descent top-down parser uses recursive functions for parsing
every non-terminal, and uses the function call stack implicitly instead of an
explicit stack of terminals and non-terminals.

If we also want the parser to do something, then these recursive functions
will return values. They will also sometimes take values as parameters.

(See posted example.)

SI 413 (USNA) Unit 4 Fall 2023 27 / 44

LL Parsers

Table-driven parsing

Auto-generated top-down parsers are usually table-driven.

The program stores an explicit stack of expected symbols, and applies
rules using a nonterminal-token table.

Using the expected non-terminal and the next token, the table tells which
production rule in the grammar to apply.

Applying a production rule means pushing some symbols on the stack.

(See posted example.)

SI 413 (USNA) Unit 4 Fall 2023 28 / 44

LL Parsers

Automatic top-down parser generation

In table-driven parsing, the code is always the same;
only the table is different depending on the language.

Top-down parser generators first generate two sets for each non-terminal:

PREDICT: Which tokens can appear when we’re expecting this
non-terminal

FOLLOW: Which non-terminals can come after this non-terminal

There are simple rules for generating PREDICT and FOLLOW, and then
for generating the parsing table using these sets.

SI 413 (USNA) Unit 4 Fall 2023 29 / 44

LR Parsers

Bottom-up Parsing

A bottom-up (LR) parser reads tokens from left to right and maintains a
stack of terminal and non-terminal symbols.

At each step it does one of two things:

Shift: Read in the next token and push it onto the stack

Reduce: Recognize that the top of the stack is the r.h.s. of a
production rule, and replace that r.h.s. by the l.h.s., which will be a
non-terminal symbol.

The question is how to build an LR parser that applies these rules
systematically, deterministically, and of course quickly.

SI 413 (USNA) Unit 4 Fall 2023 30 / 44

LR Parsers

Simple grammar for LR parsing

Consider the following example grammar:

S → E
E → E + T
E → T
T → n

Examine a bottom-up parse for the string n + n.

How can we model the “state” of the parser?

SI 413 (USNA) Unit 4 Fall 2023 31 / 44

LR Parsers

Parser states

At any point during parsing, we are trying to expand one or more
production rules.

The state of a given (potential) expansion is represented by an “LR item”.

For our example grammar we have the following LR items:

S → • E E → E + T •
S → E • E → • T
E → • E + T E → T •
E → E • + T T → • n

E → E + • T T → n •

The • represents “where we are” in expanding that production.

SI 413 (USNA) Unit 4 Fall 2023 32 / 44

LR Parsers

Pieces of the CFSM

The CSFM (Characteristic Finite State Machine) is a FA representing the
transitions between the LR item “states”.

There are two types of transitions:

Shift: consume a terminal or non-terminal symbol and move the • to
the right by one.

Example: T→•n T→n•n

Closure: If the • is to the left of a non-terminal, we have an
ϵ-transition to any production of that non-terminal with the • all the
way to the left.

Example: E→E+•T T→•nϵ

SI 413 (USNA) Unit 4 Fall 2023 33 / 44

LR Parsers

Nondeterministic CFSM

S→•EE→•E+T

E→E•+T

E→E+•T

E→E+T•

E→•T E→T•

T→•n

T→n•

S→E•Eϵ

ϵE
ϵ

+

T

ϵ

T

ϵ

n

SI 413 (USNA) Unit 4 Fall 2023 34 / 44

LR Parsers

CFSM Properties

Observe that every state is accepting.

This is an NDFA that accepts valid stack contents.

The “trap states” correspond to a reduce operation:
Replace r.h.s. on stack with the l.h.s. non-terminal.

We can simulate an LR parse by following the CFSM on the current
stack symbols AND un-parsed tokens, then starting over after every
reduce operation changes the stack.

We can turn this into a DFA just by combining states.

SI 413 (USNA) Unit 4 Fall 2023 35 / 44

LR Parsers

Deterministic CFSM

S→•E
E→•E+T
E→•T
T→•n

0

S→E•
E→E•+T

1

E→T•
2

T→n•
3

E→E+•T
4

E→E+T•
5

E

T

n

+

Tn

Every state is labelled with a number.

Labels are pushed on the stack along with symbols.

After a reduce, go back to the state label left at the top of the stack.

SI 413 (USNA) Unit 4 Fall 2023 36 / 44

LR Parsers

SLR

Parsing this way using a (deterministic) CFSM is called SLR Parsing.

Following an edge in the CFSM means shifting;
coming to a rule that ends in • means reducing.

SLR(k) means SLR with k tokens of look-ahead.
The previous grammar was SLR(0); i.e., no look-ahead required.

When might we need look-ahead?

SI 413 (USNA) Unit 4 Fall 2023 37 / 44

LR Parsers

Problem Grammar 1

Draw the CFSM for this grammar:

S → W W
W → a

W → ab

SI 413 (USNA) Unit 4 Fall 2023 38 / 44

LR Parsers

Problem Grammar 2

Draw the CFSM for this grammar:

S → W b

W → a

W → X a

X → a

SI 413 (USNA) Unit 4 Fall 2023 39 / 44

LR Parsers

SLR Conflicts

A conflict means we don’t know what to do!

Shift-reduce conflict:

W→a•
W→a•b

Reduce-reduce conflict:

W→a•
X→a•

SI 413 (USNA) Unit 4 Fall 2023 40 / 44

LR Parsers

SLR(1)

SLR(1) parsers handle conflicts by using one token of look-ahead:

If the next token is an outgoing edge label of that state, shift and
move on.

If the next token is in the follow set of a non-terminal that we can
reduce to, then do that reduction.

Of course, there may still be conflicts, in which case the grammar is not
SLR(1). More look-ahead may be needed.

SI 413 (USNA) Unit 4 Fall 2023 41 / 44

Summary

Review: Scanning

Scanning means turning source code into tokens.

Scanners . . .

are implemented with FAs.

are specified with regular expressions.

use a look-ahead character to implement maximal munch

can be generated automatically. This involves determinizing an NDFA
and then minimizing the DFA.

SI 413 (USNA) Unit 4 Fall 2023 42 / 44

Summary

Review: Top-Down Parsing

Parsing means turning a token stream into a parse tree.

Top-down parsers . . .

generate the parse tree starting with the root

can recognize LL grammars

need to predict which grammar production to take

use token(s) of look-ahead to make decisions

can be implemented by intuitive recursive-descent parsers

can also be implemented by table-driven parsers

SI 413 (USNA) Unit 4 Fall 2023 43 / 44

Summary

Review: Bottom-Up Parsing

Parsing means turning a token stream into a parse tree.

Bottom-up parsers . . .

generate the parse tree starting with the leaves

can recognize LR grammars

can recognize more languages than LL parsers

need to resolve shift-reduce and reduce-reduce conflicts

use token(s) of look-ahead to make decisions

can be implemented using CFSMs

are created by Bison

SI 413 (USNA) Unit 4 Fall 2023 44 / 44

