
SI 413 Fall 2013: Scheme Practicum Exam

This is a in-class practicum exam that will count towards your 6-week exam grade.
You should save your code in plain text in a file called exam.scm, put it in a folder on the
CS Linux environment, and run 413sub exam 01 to submit.

There are 45 points possible on this exam, spread over 6 problems. All problems are
required; you should try to get as many points as you can by writing correct functions.

Read, understand, and follow the following guidelines for this exam. If there are any am-
biguities or questions, it is your responsibility to resolve them and make sure you understand
what is expected.

• You may consult the course textbooks, anything posted on or linked directly from
the course website, any homework or lab solutions, any graded work you have been
handed back, and any notes you have taken in class.

• You may NOT consult with any other human, including your classmates and anyone
else except the instructor.

• You may NOT consult other internet sources not directly reachable from the course
website

• You may NOT perform any internet searches or post questions or queries online.

• You may NOT discuss anything about this class or this exam with anyone in the
other section that hasn’t taken it yet.

• You may NOT use your cell phone.

• You MUST contact Dr. Roche if anything is unclear, or if there are any glitches in
the submission process.

• You MUST follow the same instructions as our Scheme labs. Style counts, although
the level of documentation expected in the exam is less than what would be expected
for a lab when you have more time. Usually, choosing meaningful names for helper
functions and variables will be sufficient.

To use the built-in printf function, be sure to include the line

(#%require (only scheme/base printf))

Also, here is our version of the filter function. Feel free to copy into your code:

(define (filter pred? L)

(cond ((null? L) ’())

((pred? (car L))

(cons (car L) (filter pred? (cdr L))))

(else (filter pred? (cdr L)))))



Problem 1 5 points

Define a function (root-info L) that takes a list of the form (a b c), where a, b and c are
numbers, and returns the number of distinct real roots of the polynomial ax2 +bx+c. Recall
that b2 − 4ac, the discriminant of the polynomial, determines the number of real roots. If
the discriminant is positive there are two real roots, if it is zero there is one real root, and if
it is negative then there are zero real roots.

For full credit, you should use a let expression.

Examples:

> (root-info ’(2 1 2))

0

> (root-info ’(2 5 2))

2

> (root-info ’(1 -2 1))

1

Problem 2 5 points

Write a function (mostly-positive? x1 x2 x3 ...) that takes a variable number of ar-
guments x1, x2, . . . , xn and returns true or false depending on whether at least half of the
arguments are positive numbers (meaning strictly greater than zero).

For full credit, your function should use things like lambda, filter, map, and apply so
that there is no explicit recursion.

(See the listing of filter on the cover page.)

Example:

> (mostly-positive? 4 -2 3)

#t

> (mostly-positive? -1 -2 -20)

#f

> (mostly-positive? -1 1 -1 0 0)

#f



Problem 3 10 points

Write a function (longest-run L) that takes a list of numbers L and computes the length
of the longest “run” of equal numbers in a row.

(Hint: Consider writing a helper function (run-start L) that computes the length of
the longest run at the start of the list.)

Examples:

> (longest-run ’(10 20 20 20 20 30 40 40))

4

> (longest-run ’(10 20 30 40 30 20 10))

1

> (longest-run ’(10 10 10 10 10))

5

Problem 4 10 points

Computer logins on a certain server are stored as a list of 2-element lists, each of which
contains a symbol for the username and a string for the time. They are stored in order, with
the earliest login first.

Write a function (last-login user L) that takes a symbol for the username and returns
the string corresponding to the last entry in L that matches that username. If the username
is never found, your function should return #f

(Hint: I think the easiest way to write this function is by making it tail-recursive.)

Examples:

> (last-login ’r2d2 ’((r2d2 "morning") (c3po "noon") (r2d2 "evening")))

"evening"

> (last-login ’c3po ’((r2d2 "morning") (c3po "noon") (r2d2 "evening")))

"noon"

> (last-login ’chewy ’((r2d2 "morning") (c3po "noon") (r2d2 "evening")))

#f



Problem 5 10 points

A certain computer system must be rebooted every 24 hours, for reasons that will not be
specified. The way it works is, every time someone logs on, the current time is compared
with the time of the last reboot. If it’s been more than 24 hours since the last reboot, the
system is restarted; otherwise nothing at all happens.

Write a function (make-rebooter start) that returns a new function (lambda expres-
sion) to represent a rebooting login server. The returned function should take a single argu-
ment which will be a number, representing the current login time in seconds since some prior
fixed event. Your new function should do nothing if no reboot is necessary, and otherwise it
should return the symbol ’reboot and update the internal time.

Note: the time is always updated from the last reboot, and only one reboot happens at
a time.

(In case you’ve forgotten, there are 60 minutes in an hour, and 60 seconds in a minute.
24 hours before a required reboot.)

Examples:

> (define comp (make-rebooter 100000))

> (comp 101000)

> (comp 102000)

> (comp 160000)

> (comp 180000)

> (comp 200000)

reboot

> (comp 300000)

reboot

> (comp 300001)

> (comp 380000)

> (comp 388000)

reboot



Problem 6 5 points

Someone has been sneaky trying to avoid reboots, by winding back the clock by a few hours
every time they login. Make another function (better-rebooter start) that works just
like the object above, with the following addition: If the most recent time is strictly less
than the last login time, two things happen: a message is displayed saying

WARNING: Time went backwards.

And then the machine is rebooted as normal, meaning the symbol ‘reboot is returned
and the last reboot time is updated accordingly. That is, if time goes backwards, you always
force a reboot.

Examples:

> (define R2 (better-rebooter 0))

> (R2 1000)

> (R2 1000)

> (R2 100000)

reboot

> (R2 1000)

WARNING: Time went backwards.

reboot

> (R2 100000)

reboot

> (R2 500000)

reboot

> (R2 505555)

> (R2 500001)

WARNING: Time went backwards.

reboot


